

INSTRUCTION MANUAL DC POWER SUPPLY MODEL C40-1

Lttronix

GENERAL

The Oltronix C 40.1 group consists of well regulated D. C. Power Supplies for general lab use. They are available as bench models in single, dual and tripple units and as a $19^{\prime \prime}$ Rack model in a dual unit.

METERS, CONTROLS \& TERMINALS

Each supply is fully metered i.e. one volt-and one amp-meter for each output. The output voltage is continuously variable from 0 to 40 V by a coarse and a fine control, the latter providing an output change of approximately 5 mV per degree of rotation.

The current limit control may be set from 110% to 10% of the rated current. Binding posts are provided on the front panel of all models. All output terminals are isolated from the chassis and may be individually connected to the ground terminal. In addition the Rack model has a connector at the rear. Remote programming and sensing are available on the front and at the rear connector of the Rack model.

ADJ. CURRENT LIMIT - CONSTANT CURRENT

These units feature a continuously adjustable current limit which protects both the load and the power supply. When current limiting takes place the function is actually that of a constant current source.

SERIES \& PARALLEL OPERATION

Several supplies can be connected in series as long as the maximum voltage to the chassis does not exceed 500 V D.C. The current limiting feature makes parallel connection possible without internal switching, but one of the supplies must always remain in the voltage regulating mode, regardless of the current swing.

REMOTE PROGRAMMING \& SENSING

The outputvoltage from 2C40-1R can be controlled externally by a resistor. The programming constant is 500 ohms per volt.
2C $40-1 R$ permits sensing of load variations at the load terminals, rather than at the Power Supply terminals. This compensates for any regulation loss which might result from IR drops in load leads.

REGULATED LOW VOLTAGE POWER SUPPLIES C40-1 group

$C 40-1$	$0-40 V$	$1 A$	Bench type	
$2 \mathrm{C} 40-1$	$2 \times 0-40 \mathrm{~V}$	1 A	11	11
$3 \mathrm{C} 40-1$	$3 \times 0-40 \mathrm{~V}$	1 A	11	11
$2 \mathrm{C} 40-1 \mathrm{R}$	$2 \times 0-40 \mathrm{~V}$	1 A	19^{11}	Rack

INPUT VOLTAGE $220 \mathrm{~V} 50-400 \mathrm{~Hz}$ may fluctuate between 200 and 240 V .

LINE REGULATION ... $0,03 \%$ or 6 mV for a 10% line voltage variation.

LOAD REGULATION .. Better than 25 mV for no load to full load change.

RIPPLE
Less than 250 uV r.m.s.
RECOVERY TIME ... 40 usec. for full load change.
OUTPUT IMPEDANCE. Less than 50 mohm up to 10 kHz at $200 \mathrm{kHz} 0,5 \mathrm{ohm}$.

LONG TERM
STABILITY
Less than 40 mV per 8 hours after warm up and at constant ambient temperature.

TEMP. COEFFICIENT. approximately $0,03 \%$ per ${ }^{\circ} \mathrm{C}$.
AMBIENT TEMP..... max. $+40^{\circ} \mathrm{C}$.

DIMENSIONS \& WEIGHT

	$\mathrm{C} 40-1$	$2 \mathrm{C} 40-1$	$3 \mathrm{C} 40-1$	$2 \mathrm{C} 40-1 \mathrm{R}$
Height	228 mm	228 mm	228 mm	132 mm
Width	120 mm	234 mm	352 mm	$19^{\prime \prime}$
Depth	280 mm	280 mm	280 mm	280 mm
Weight	5 kgs	10 kgs	15 kgs	13 kgs

OPERATION INSTRUCTIONS

Controls and terminals.
ON is the line power switch. When the power is on the pilot light glows.
$\frac{0-40 \mathrm{~V} ; \text { FINE. }}{0-60 \mathrm{~V} ; \text { FINE. }}$ Coarse and fine voltage controls.
50-500 mA.
0,1-1 A.
The control of the current limiting device.

- +. The floating output. Either terminal may be connected to the chassis ground.
METERS. These read simultaneously output voltage and current.
VOLTM. 10 V or 14 V . (B40-1, B60-1). When pressing the button the voltmeter range is 10 V or 14 V full scale.

SET CONSTANT CURRENT: (B40-1, B60-1). When pressing the button the supply will be shorted with a 5 ohms resistor.
500 mA . 1A. The line fuse at the rear of the instrument.
220 V 50 Hz . The power line socket at the rear of the instrument.

Operation.

l. Using the current limiting device.
a) Set the output voltage to about 10 V .
b) Short the supply with a wire and for B type press the SET CONSTANT CURRENT pushbutton and set the output current as desired with the current control.
c) Disconnect the wire and set the output voltage as desired.

Depending on the load the instrument is maintaining either a constant current or a constant voltage.
2. Connecting two or more instruments in parallell.

The circuit makes it possible to parallell serveral units without internal changes. The parallelling of units permits a higher current together with a stable voltage. When two units are parallelled one must maintain a constant current and the other a constant voltage. Therefore
a) set the output voltage of the "current" unit to slightly higher voltage than that of the "voltage" unit.
b) divide the current between the units to about equal in such a way that the 'voltage' unit is set to higher current-limit (or at maximum) than the "current" unit.
c) if the voltage decreases when the load is connected correct this by increasing the current limit of the 'voltage" unit and, if necessary, also of the "current" unit.

When series connecting two or more units the current limiting controls should also be checked. Since the current through the units will be identical a voltage drop may take place, if the current limit is set too low.

CIRCUIT DESCRIPTION.

The transformer supplies A.C. voltages to the main and auxiliary supplies. The main supply consists of the full wave rectifier Zl , the filter capacitor C 4 and the series regulator transistors T7-T8.
The auxiliary supplies consist of the rectifiers $\mathrm{Z} 2, \mathrm{Z} 3, \mathrm{Z} 4$ and their filtering capacitors Cl, C2 and C7 respectively. These supplies provide reference and bias voltages for the regulating transistors.
The reference voltage is obtained from Dl and D2. The output voltage is compared with the reference voltage and is set with the potentiometers Pl and P2. The transistors T7 and T8 act as a series resistance and conduct more current when their base goes more negative with respect to the emitter. The transistor T8 controls the current through Rl. 3 and thus serves the purpose of optimizing the distribution of the power losses between the power dissipating units T7, T8 and Rl3. The T7 base is controlled by the emitter followers T6 and T5. The emitter followers in turn are controlled by the differential amplifier consisting of the transistors Tl and $T 2$, which are fed by a near constant current by means of the transistor T3 (B models only). The differential amplifier compares the output voltage with the reference by means of the potential divider R19-Pl-P2.
The current limiting device consists of the transistor T4 and the potentiometer P5. T4 controls the base of T5 but is normally cut off. If the voltage across R2P3 exceeds that of P5, T4 will come on and take over the control from T2. Thus the current limit is set with the potentiometer P3 and controlled by the transistor T4.
In the B60-1 the relay Kl switches the transformer output to a higher step when the output voltage of the supply exceeds around 30 Volts. Kl is operated by the Smith's trigger T9-Tl0 which is set to trigger at the proper voltage by means of P4.

MAINTENANCE AND SERVICE.

Cover removal.
The cover is removed by unscrewing the two screws one at the top and one at the bottom of the instrument and sliding the chassis backwards.

There are no parts which require regular maintenance. The circuit reference obtained from the schematic diagram is used to identify the corresponding component in the spare parts list. Most parts used in the Oltronix' instruments are standard parts obtainable from any well equipped parts distributor. Parts are also available from us at current net prices.
One exception is the classification of transistors. In the diagrams two designations are used for each transistor, one is the manufacturer standard type designation and the other is our code indicating the voltage the transistor is supposed to withstand and the gain. L means low gain (below 50) and H high gain. For small transistors the following colour marking is used: Brown: L25, yellow: L50, white: L75, red: H25, green: H50, violet: H75. Our code is marked on each transistor after its evaluation in our curve tracer and is a guarantee that the transistor will function properly. For replacement purposes a transistor with the manufacturer designation only has about 80% chance to work satisfactorily.

Service.

If any trouble should occur, trouble shooting will be easier by following this service instruction. A table of characteristic voltages for a normally functioning supply and a check list follows.
The voltages are measured under the following conditions:
No load: 40 and 60 V output (respectively). The current limiting potentiometer turned fully clockwise.
Full load: 40 and 60 V (respectively), maximum rated output current.
All transistor voltages are measured with respect to the emitter.
The method used when trouble shooting depends largely on the indication failure. It is usually recommendable to use a variac with ammeter and start with about $5-10 \%$ of normal line voltage. This prevents burning and possible damage inside the instrument. With the low input voltage connected all voltages across the filtering capacitors are checked. There should be a small D. C. voltage and the effect of the capacitor may be noticed when it is shorted.
After all the filtered D.C. voltages have been checked the variac is slowly increas ed while the line ammeter is watched for jumps in the current. It is also necessary to check now if any component shows abnormal temperature. If this is not the case the input voltage can be raised to normal.
Starting with the filter capacitors and the reference voltage all figures in the following list may now be checked. There are, of course, thousands of combinations which can not be listed here. Too high output voltage can be caused by a short in $T 7$ or in T6 and T5 but also by interruption in T2, T3 or P1 or P2. Too low voltage may be caused by interruption in T7, T6 or T5 or a short in T2 etc. High ripple and poor regulation may be caused by low gain in any of the transistors T1, T2, T5, T7. It may, of course, also indicate a defective reference voltage.

VOLTAGE LIST

	No load		Full load
Cl	11	V	10 V
C2	21	V	22,5 V
C4	69	V	$54 \quad \mathrm{~V}$
D2	6,8	V	$6,8 \mathrm{~V}$
Tl base	-0, 1	V	-0,1 V
collector	-40	V	$-40,5 \mathrm{~V}$
T2 base	-0,14	V	-0,14 V
collector	-40	V	-40 V
T4 base	+1, 9	V	$+0.22 \mathrm{~V}$
collector	-40	V	-41,5 V
T5 base	-0, 1	V	-0,11 V
collector	-9, 3	V	$-5,7 \mathrm{~V}$
T6 base	-0, 15	V	$-0,2 \mathrm{~V}$
collector	-9,5	V	-6 V
T7 base	-0, 1	V	-0,3 V
collector	-27	V	-8 V
T8 base	+15,5	V	-0,35 V
collector	-1,3	V	$-2,3 \quad \mathrm{~V}$

NODELC

Oltronix transistor identification code

To assure that the transistors in the Oltronix power supplies have good enough data for their actual application, all transistors are tested in a Tektronix Curve Tracer before they are mounted in any instrument. Certain transistors e.g. power transistors and transistors for high voltage use pass a more complete test after which a classification mark is applied. This mark is a letter-number combination on the power transistors and a colour dot on the smaller transistors.

The letter indicates high "H" or low "L" current amplification. The number shows the maximum working voltage.

The test conditions are:

Test	Power transistors TO-3 and TO-36		Other transistors TO-5 and similar	
Current amplification	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & I_{c}=1 \mathrm{~mA} \\ & V_{C E}=10 \mathrm{~V} \end{aligned}$	
	High if $\mathrm{h}_{\text {FE }}$	≥ 50	High if h_{FE}	≥ 50
	Low if $h_{E E}$	<50	Low if $h_{\text {FE }}$	
Voltage	Transistors with extremely high or extremely low $h_{F E}$ are z fused.			
	$\mathrm{I}_{\mathrm{c}}=400 \mathrm{~mA}$		$\mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA}$	
	$\mathrm{R}_{\mathrm{BE}}=100 \mathrm{ohm} \mathrm{s}$		$\mathrm{R}_{\mathrm{BE}}=1,5 \mathrm{k}$	

The colour code is:

Class	Colour	Class	Colour
L25	Brown	L100	Silver
H25	Red	H100	Black
L50	Yellow	L125	Silver and brown
H50	Green	H125	Black and red
H65	Blue	L150	Silver and yellow
L75	White	H150	Black and green
H75	Violet	L175	Silver and white
		H175	Black and violet

To get TO- 36 power transistors distributed in the voltage and amplification classes in a way suiting our program, transistors of the types $2 \mathbb{N} 442,2 N 443$, 2N1099 and 2N1100 are used. These transistors come from the same production line, but are classified by the manufacturer. Because of our special requirements these transistors are reclassified at the Oltronix factory. Transistors of different types and from different manufacturers thus can replace each other if they have identical Oltronix classification.
A.bbreviations
Cer.
EMC
F
K
M
u

ceramic	p	uu or 10^{-12}
electrolytic, metal case	PT	paper tubular
farad	W	Watt
Kilo or 10^{3}	WW	wire wound

Capacitors

Cl
C 2
C 3
C 4
C 5
C 6
C 8
C 9
$\frac{\text { Fuse }}{\text { Fl }}$
$\frac{\text { Bulb }}{\text { I } 1}$
$\frac{\text { Meters }}{\text { MT1 }}$

Potentiometers

P1	2
P2	1
P3	2
P5	5

25 Kohm
1 Kohm
20 ohm G
5 Kohm

Type CL43	WW	Spec. design
"	WW	
CLR 3001/ll		
P4 $1 / 4 W$	Carbon	$\pm 20 \%$

Clarostat H
Colvern
Vitrohm

Resistors

R1	100 Kohm	1/3W
R2	2 ohm	3 W
R3	390 ohm	1/3W
R4.	680 ohm	1/3W
R5	10 Kohm	1/3W
R7	270 ohm	1/3W
R8	270 ohm	1/3W
R9	33 Kohm	1/3W
R10	150 ohm	$1 / 3 W$
Ril	1, 2 Kohm	1/3W
R12	51 ohm	1/3W
R13	37, 5 ohm	40W
R14	10 Kohm	1/2W
R15	3 Kohm	2 W
R16	56 Kohm	1/3W
R17	5 Kohm	3 W

Carbon
WW
Carbon
"
"
$"$
$"$
$"$
$"$
$"$
$"$
$"$
W
WW
Carbon
WW
Carbon
WW

$\pm 10 \%$	Beyschlag
$\pm 5 \%$	Vitrohm
$\pm 5 \%$	Beyschlag
11	$"$
$\pm 10 \%$	$"$
11	$"$
11	$"$
11	$"$
11	$"$
$" 1$	$"$
11	$"$
$\pm 5 \%$	Erie
$\pm 10 \%$	Beyschlag
$\pm 5 \%$	Vitrohm
$\pm 10 \%$	Beyschlag
11	Vitrohm

R18	1 Kohm	$1 / 3 \mathrm{~W}$	Carbon	$\pm 10 \%$	Beyschlag
R19	4 Kohm	2 W	WW	$\pm 5 \%$	Vitrohm

$\frac{\text { Switch }}{\text { Sl }}$

Transistors

T1

T2
T4

T5

T6

T7
T 8

Rectifiers

Z1 4pcs	BYZ13	200 V PIV 6A
Z2	B30 C250	
Z3	B30 C250	
Diodes		
D1	ZD12	11,9-12,3V $12,4-12,6 \mathrm{~V}$
D2	ZF 6.8	6,6-6, 8V 6, 9-7,1V
D3	IN 4003	200 V PIV 750 mA
D4	ZF 6, 8	6,6-6,8V
D5	BYZ 13	200 V PIV 750 mA

Transformer

ACY 17
2S302
ACY 17
2S302
ACY 17
2S302
ACY 19

ACY 19

2N 1099
OC29, TI3029

213
30

ZD12
ZF 6, 8
IN 4003
ZF 6,8
BYZ 13

16152

Type 132
Beyschlag Vitrohm

Mullard, Texas

1111

11 11

11

11

RCA
Mullard, Texas
"
Siemens
"

Intermetall
"
Motorola
Intermetall
Mullard

Elab

