INSTRUCTION MANUAL

Before operating this set, please read these instructions completely

CORRECTION

Line Voltage

The line voltage described in this instruction manual is 115 V AC. When the instrument is modified at the factory before shipment for some other line voltage, a tag marking this voltage is attached to the power cord. Please correct the circuit diagram and description according to the line voltage indication on the tag.

CONTENTS

SECTION 1 GENERAL 1
SECTION 2 SPECIFICATIONS 2
SECTION 3 OPERATING INSTRUCTIONS 12
SECTION 4 DIAGRAMS 29
SECTION 5 LOCATION OF PRINTED CIRCUIT BOARD 42
SECTION 6 ADJUSTMENT PROCEDURES 49
SECTION 7 PARTS LIST 7-1

SECTION l GENERAL

The VP-5234A/S oscilloscope is intended to cover a wide range of usages for such equipment as audio, video, digital, and many more similar electronic devices.

It has a 6 -inch square CRT with an internal graticule, and incorporates a variety of useful functions.

Both the VP-5234A horizontal and VP-5234S vertical type oscil-. loscopes are available for selection by users.

It is a compact, lightweight unit designed for use in laboratories, maintenance, as well as for non-professional use at home. The oscilloscope provides low cost performance ratio and high operational reliability.

Distinctive features of the VP-5234A/S are:
(1) A 6-inch square CRT with the adoption of an internal graticule.
(2) Both horizontal (VP-5234A) and vertical (VP-5234S) Models are available.
(3) Triple wave signals can be observed.
(4) A built-in delayed sweep function
(5) Digital signals can be readily observed by holdoff control.
(6) Easy sweep triggering is provided by AUTO FIX.
(7) Hi-mic has been adopted to enhance reliability (objective MTBF value: $15,000 \mathrm{H}$)
(8) A built-in TV synchronous separator circuit
(9) Observation of two non-correlated signals by a built-in alternate trigger
(10) Output terminal for recording vertical signals (option)

SECTION 2 SPECIFICATIONS

2.1 VERTICAL DEFLECTION SYSTEM
2.1.1 Deflection factor :
$20 \mathrm{mV} / \mathrm{DIV} \sim 10 \mathrm{~V} / \mathrm{DIV}$ (with no magnifier)
$2 \mathrm{mV} / \mathrm{DIV} \sim 1 \mathrm{~V} / \mathrm{DIV}$ (with magnifier set at $\times 10$)

9 steps in $1-2-5$ sequence
2.1.2 Deflection factor accuracy

Within 3% of indicated deflection
with VARIABLE set at CAL position
2.1.3 Uncalibrated (variable) range

Provides continuously variable deflection factors between the calibrated steps. Extends maximum uncalibrated deflection factor to at least $25 \mathrm{~V} / \mathrm{DIV}$.
2.1.4 Frequency response

Bandwidth	Risetime
$D C \sim 30 \mathrm{MHz}($ at $\times 1)$	11.7 nsec
$D C-25 \mathrm{MHz}($ at $\times 10)$	14 nsec

2.1.5 Input impedance

Direct $\quad 1 \mathrm{M} \Omega$ paralleled by approx. 30 pF

With probe $10 \mathrm{M} \Omega$ paralleled by approx. 20 pF
2.1.6 Maximum input voltage
$500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\left(\mathrm{DC}+A C_{\mathrm{p}-\mathrm{p}}\right)$

2.1.7 Input coupling

AC or DC selected by front-panel Input Coupling switch (AC-GND-DC).
2.1.8 Vertical display modes:

CH1, CH2, DUAL, ADD, TRIPLE

$$
\binom{\text { DUAL; CHOP } \ldots 0.5 \mathrm{~S} / \mathrm{DIV} \sim 0.1 \mathrm{mS} / \mathrm{DIV}}{\text { ALT } \ldots 50 \mu \mathrm{~S} / \mathrm{DIV} \sim 0.1 \mathrm{mS} / \mathrm{DIV}}
$$

2.1.9 Chopping rate
$500 \mathrm{kHz} \quad \pm 30 \%$
2.1.10 Polarity inversion

Displayed signal on CH 2 can be inverted.
2.1.11 CH3 deflection factor

INT; $1 / 5$ of the displayed signal $\pm 30 \%$
EXT; 1 V/DIV $\pm 30 \%$
Frequency response
DC ~ 10 MHz
Position
(1 $\pm 0.2)$ DIV from the bottom graticule line

2.2 TRIGGERING

2.2.1 Trigger mode NORM, AUTO FIX
2.2.2 Trigger source INT (NORM, CH1, CH2), LINE, EXT
2.2.3 Trigger coupling AC-DC-TV

$$
\left(\begin{array}{cccc}
\mathrm{TV} ; & 0.5 \mathrm{~S} / \mathrm{DIV} \sim 0.1 \mathrm{mS} / \mathrm{DIV} & \ldots & \mathrm{TV}-\mathrm{V} \\
& 50 \mu \mathrm{~S} / \mathrm{DIV} \sim 0.2 \mu \mathrm{~S} / \mathrm{DIV} & \ldots & \mathrm{TV}-\mathrm{H}
\end{array}\right)
$$

2.2.4 Slope

Sweep can be triggered from positive-going or negative-going portion of trigger signal.
2.2.5 Maximum external input voltage $300 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}(\mathrm{DC}+\mathrm{AC} \mathrm{p}-\mathrm{p})$
2.2.6 External input impedance
$1 \mathrm{M} \Omega \pm 20 \%$ paralleled by $30 \mathrm{pF} \pm 20 \%$
2.2.7 Trigger level control range
$\pm 1 \mathrm{~V}- \pm 2 \mathrm{~V}$
2.2.8 Trigger sensitivity

NORM TRIGGER

		INT	EXT
AC	$\begin{aligned} 30 \mathrm{~Hz} & \sim 5 \mathrm{MHz} \\ & \sim 40 \mathrm{MHz}\end{aligned}$	0.4 DIV	0.2 V
		2.0 DIV	1 V
DC	$\begin{aligned} \mathrm{DC} & \sim 5 \mathrm{MHz} \\ & -40 \mathrm{MHz} \end{aligned}$	0.4 DIV	0.2 V
		2.0 DIV	1 V
TV	Video signal (Composite sync)	$1 \text { DIV }_{p-p}$	$0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

AUTO FIX TRIGGER

		INT	EXT
AC	$400 \mathrm{~Hz} \sim 5 \mathrm{MHz}$	0.5 DIV	0.2 V
	$400 \mathrm{~Hz} \sim 30 \mathrm{MHz}$	2 DIV	1 V
DC	$400 \mathrm{MHz} \sim 5 \mathrm{MHz}$	0.5 DIV	0.2 V
	$400 \mathrm{~Hz} \quad \sim 30 \mathrm{MHz}$	2. DIV	1 V
TV	Video signal (Composit sync)	$1 \operatorname{DIV}_{\mathrm{p}} \mathrm{p}$	$0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

2.2.9 Auto triggering

Stable display is presented with signal amplitudes (given in internal and external sensitivities) above 100 Hz . When no sweep is triggered, nor is any input signal, the sweep goes free running.
2. 3 SWEEP
2.3.1 Trig.ger mode

AUTO, NORM, SINGLE
2.3.2 HORIZ DISPIAY

A, A INTEN, B

2.3.3 A SWEEP

$0.5 \mathrm{~S} / \mathrm{DIV} \sim 0.2 \mu \mathrm{~S} / \mathrm{DIV}$ in 20 calibrated steps in $1-2-5$ sequence
2.3.4 B SWEEP
$0.5 \mathrm{mS} /$ DIV $\sim 0.2 \mu \mathrm{~S} /$ DIV in 11 calibrated steps in $1-2-5$ sequence
2.3.5 Uncalibrated (variable) sweep rates

Provides continuously variable sweep rate between the calibrated steps. Extends slowest uncalibrated sweep rate to at least $1.25 \mathrm{~S} / \mathrm{DIV}$ for A sweep, or $1.25 \mathrm{mS} / \mathrm{DIV}$ for B sweep.
2.3.6 Sweep rate accuracy

$$
\begin{aligned}
& 0.2 \mathrm{~S} / \mathrm{DIV} \sim 0.2 \mu \mathrm{~S} / \mathrm{DIV} \\
& \pm 3 \% \\
& 0.5 \mathrm{~S} / \mathrm{DIV} \quad \\
& \pm 4 \%
\end{aligned}
$$

2.3.7 Sweep magnification

Display is magnified 10 times at center screen.
2.3.8 Magnification accuracy

Unmagnified sweep rate accuracy plus 2%.
2.3.9 Delayed sweep starting point
0.5 to 10 divisions for A sweep
2.3.10 Delay time jitter

One part or less in 10000 of the maximum available delay time
2.3.11 Single sweep
" A " sweep generator produces only one time when triggered.
2.3.12 Holdoff

Holdoff time is continuously variable up to 4 times or longer.
2.4 X-Y OPERATION
2.4.1 External horizontal input (1)
$\mathrm{CHI}=\mathrm{X}, \mathrm{CH} 2=\mathrm{Y}$
Deflection factor
For both X and $\mathrm{Y} \ldots 2 \mathrm{mV} / \mathrm{DIV} \sim 10 \mathrm{~V} / \mathrm{DIV} \pm 5 \%$
Frequency bandwidth
$\mathrm{DC} \sim 1 \mathrm{MHz}$
Phase difference
3° or less at 1 MHz
2.4.2 External horizontal input (2)

EXT INPUT $=\mathrm{X}$
CHl and $\mathrm{CHZ}=\mathrm{Y}$ (Dual signal operation is enabled)
Deflection factor
X... 0.2 V/DIV $\pm 20 \%$

Frequency bandwidth
DC ~ 1 MHz
Input impedance
$1 \mathrm{M} \Omega \pm 20 \%$ paralleled by $30 \mathrm{pF} \pm 20 \%$

$2.5 \quad \mathrm{Z}$ AXIS

2.5.1 Polarity

5 -volt peak-to-peak signal produces noticeable modulation at normal intensity.
2.5.2 Frequency range DC ~ 10 MHz
2.5.3 Input resistance $47 \mathrm{k} \Omega \pm 20 \%$
2.5.4 Maximum allowable input voltage $50 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\left(\mathrm{DC}+A C_{\mathrm{p}-\mathrm{p}}\right)$
2.5.5 Input coupling DC coupling
2. 6 CALIBRATION VOLTAGE
2.6.1 Output voltage
0.1 V
2.6.2 Accuracy $\pm 1 \%$
2.6.3 Waveform

Positive square wave
2.6.4 Frequency and risetime
$1 \mathrm{kHz} \pm 10 \%, 10 \mu \mathrm{sec}$ or less

2. 7 CATHODE-RAY TUBE

2.7.1 Tube type

Square CRT with internal graticule.
2.7.2 Accelerating potential
$6 \mathrm{kV} / 1.5 \mathrm{kV}$
2.7.3 Graticule area

8 divisions vertical by 10 divisions horizontal (1 division 9.5 mm)
2.8 POWER SOURCE
2.8.1 Line voltage

100 V	$90 \mathrm{~V} \sim 110 \mathrm{~V}$
115 V	$104 \mathrm{~V}-126 \mathrm{~V}$
215 V	$194 \mathrm{~V}-236 \mathrm{~V}$
230 V	$207 \mathrm{~V} \sim 250 \mathrm{~V}$

2.8.2 Line frequency
$50 \mathrm{~Hz} \sim 400 \mathrm{~Hz}$
2.8.3 Power consumption 39 W
2. 9 ENVIRONMENTAL CHARACTERISTICS
2.9.1 Operating temperature

$$
0 \sim 50^{\circ} \mathrm{C}
$$

2.9.2 Storage temperature $-20 \sim 70^{\circ} \mathrm{C}$

2.9.3 Operating relative humidity

$$
20 \sim 80 \%
$$

2.9.4 Vibration and shock requirement

Factory sampling tests assure the following operating and non-operating performance.
(1) Vibration test

15 minutes of vibration along each of three major axes at a total displacement of 0.6 mm peak-to-peak from $600-3300$ - 600 r.p.m. in one minute cycles.

Held at 3300 r.p.m. for 3 minutes on each axis; total test time, 54 minutes.
(2) Shock test

Two shocks of 30 G , one-half sine, on each surface. Total of 12 shocks.
(3) Transportation package drop
$55-\mathrm{cm}$ drop on a corner and three edges, and. $65-\mathrm{cm}$ drop on each flat surface. Total of 10 drops.

These tests repeated twice or more may cause partial cause to the instrument.
2.10 STANDARD ACCESSORIES

Probe (VQ-054K3015) 10:1	2
BNC adaptor (YXFC46004190)	1
Grounding adaptor (YXFC76J003)	1
Rush proof fuse (YXAFTSClA)	1
Instruction manual	1
Allen wrench (5/64 inch)	1
Allen wrench (3/64 inch)	1

2.11 OPTIONS

- Readout circuit
- CHl Signal out
- Front cover

2. 12 MECHANICAL CHARACTERISTICS

2.12.1 Overall dimensions

		Width (mm)	Hetght (mm)	Depth (mm)
$\begin{aligned} & \text { VP-5234A } \\ & \text { (Horizontal } \\ & \text { type) } \end{aligned}$	Main body only	264 ± 3	177 ± 3	375 ± 3
	(Measured at maximum points)	$\begin{aligned} & 294 \text { or } \\ & \text { less } \end{aligned}$	$\begin{aligned} & 197 \text { or } \\ & \text { less } \end{aligned}$	$\begin{aligned} & 450 \text { or } \\ & \text { less } \end{aligned}$
$\begin{aligned} & \text { VP-5234S } \\ & \text { (Vertical } \\ & \text { type) } \end{aligned}$	Main body only	177 ± 3	264 ± 3	375 ± 3
	(Measured at maximum points)	$\begin{aligned} & 184 \text { or } \\ & \text { less } \end{aligned}$	$\begin{aligned} & 294 \text { or } \\ & \text { less } \end{aligned}$	$\begin{aligned} & 450 \text { or } \\ & \text { less } \end{aligned}$

2.12.2 Net weight (without accessories) about 7.8 kg

SECTION 3 OPERATING INSTRUCTIONS

3.1 OPERATIONS

3.1.1 Line voltage

The Model VP-5234A/S can be operated from either a 100 V or 200 V nominal line voltage. Please check before turning on the instrument whether the conversion plug has been set properly.

The fuse current capacity must be determined based on the fuse data indicated on the rear panel.

A line frequency of 50 Hz to 400 Hz can be used.

Line voltage range	
100 V	$90 \sim 110 \mathrm{~V}$
115 V	$104 \sim+126 \mathrm{~V}$
215 V	$194-236 \mathrm{~V}$
230 V	$207 \sim 250 \mathrm{~V}$

1 A	$90 \sim 126 \mathrm{~V}$		
0.5 A		\quad	$194-250 \mathrm{~V}$
---:			

3.1.2 Description of Controls and Connectors

A brief description of the function and operation of the front-, side- and rear-panel controls and connectors follows:

- Front panel
(1) INTEN
Controls brightness of display.
(2) FOCUS
Provides adjustment for optimum display difinition.
(3) ROTATION Corrects inclination of the trace caused by earth magnetism.
(4) CAL 0.1 V

Used to calibrate the vertical deflection factor and the square waveform of a $10: 1$ probe.
0 . 1-volt square wave of a frequency of 1 kHz is obtained. For probe calibration, a display of 5 divisions is obtained by setting the VOLTS/ DIV switch to $2 \mathrm{mV} / \mathrm{DIV}$ (magnifier set at Xlo).
(5) INPUT

Input connector for channel deflection signals. (X) and (Y) are used as the connections for the X - and Y - signals, respectively, in $X-Y$ operation.
(6) AC-GND-DC Selects method of coupling input signal to gate of Input Amplifier.
$A C: D C$ component of input signal is blocked with a capacitor; only $A C$ component is passed to the Input Amplifier. A notable sag appears for the square waveform with a frequency of 1 kHz or lower. Low frequency limit (-3 dB point) is approximately 3.4 Hz .

GND: In put circuit is grounded (does not ground applied signal).

DC: All components of the input signal are passed to the Input Amplifier.

Selects vertical deflection factor in 1-2-5 sequence. (VARIABLE knob (8) must be in CAL position for indicated deflection factor.)
(8) VARIABLE Provides continuously variable uncalibrated PULL XIO deflection factor between the calibrated settings of the VOLTS/DIV switch. The indicated deflection factor may be reduced in minimum 1/2. 5 ratio. The factor can be multiplied by 10 by pulling this knob.
 BOTH IN ADD Selects vertical mode of operation.

CHI: The signal connected to the INPUT CHl connector is displayed.

CH2: The signal connected to the INPUT CH2 connector is displayed.

DUAL: $\left\{\begin{array}{l}0.5 \mathrm{~S} / \text { DIV }-0.1 \mathrm{mS} / \text { DIV } \ldots \text {... CHOP } \\ 50 \mu \mathrm{~S} / \mathrm{DIV} \sim 0.2 \mathrm{~S} / \text { DIV } \ldots .\end{array}\right.$
Remove the housing to reveal a slide switch on the frame side of the printed circuit board fitted with the TIME/DIV switch. CHOP-ALT is inverted by sliding the switch forward.

CHOP ... Dual-trace display of signals on both channels. Display is switched between channels at a repetition frequency of 500 kHz regardless of the sweep.

ALT Dual-trace display of signals on both channels. Display is switched at end of each sweep.

TRIPLE: Triple-trace display of signals on three channels with the trigger circuit used as CH3 to which the EXT INPUT signal is input.

ADD: Signals applied to the INPUT CHl and INPUT CH2 connectors are algebraically added and the algebraic sum is displayed on the CRT by simultaneously pressing CH 1 and CH 2 buttons.
(10) POLAR

(12) NORM -$\mathrm{CH}-\mathrm{CH} 2$

Two-motion switch which inverts CH 2 display, when pressed, and the polarity returns to normal when pressed again.
(INV 血; NORM 醍)
Controls vertical position of trace.
Selects source of internal trigger signal from vertical deflection system.

NORM: Sweep circuits are triggered from displayed channel(s). In the ALT mode, sweep is triggered alternately, even by signal sources having no timing relation. However, no stable display is obtained in the CHOP mode.

CH1: Sweep circuits are triggered only from signal applied to INPUT CHl connector.

CH2: Same as above, except INPUT CH2.
(13) INT-LINE Selects source of trigger signal.
-EXT
INT: Internal trigger signal obtained from vertical deflection system.
(14) AC-DC-TV
(15) HOLDOFF
(16) LEEVEL

LINE: Trigger signal obtained from sample of the line voltage applied to this instrument. (Selection range is narrow for the $400-\mathrm{Hz}$ line voltage.)

EXT: Trigger signal obtained from an external signal applied to the EXT INPUT connector.

Determines method of coupling trigger signal to trigger circuit.

AC: Rejects DC components of trigger signal with a capacitor.

DC: Accepts all trigger signals.

TV: Trigger signal is obtained from TV synchronizing signal separator circuit.

$$
\frac{\mathrm{TV}-\mathrm{V} ; 0.5 \mathrm{~S} / \mathrm{DIV} \sim 0.1 \mathrm{msec} / \mathrm{DIV}}{\mathrm{TV}-\mathrm{H} ; 50 \mu \mathrm{~S} / \mathrm{DIV} \sim 0.2 \mu \mathrm{sec} / \mathrm{DIV}}
$$

Signal polarity can also be inverted See (9).
Used to get stable display with such a complex and repetitive waveform that sweep cannot be triggered by simple trigger level control.
Holdoff time increases when this knob is turned clockwise.

Selects amplitude point on trigger signal at which sweep is triggered.

When this knob is pulled, sweep can be triggered from negative going portion of trigger signal. When this knob is turned to the extreme left, the switch clicks, causing the horizontal system to go FIX trigger. In this triggering mode, sweep is triggered automatically by a signal above a certain level.
(17) MAIN A SWEEP

Selects the sweep rate of the A'sweep circuit and the delay time for delayed sweep.
EXT
$\mathrm{X}-\mathrm{Y} \quad \mathrm{X}-\mathrm{Y}$ operation is set when this switch is rotated fully counterclockwise.
(i) An $\mathrm{X}-\mathrm{Y}$ oscilloscope with CHI $=\mathrm{X}$ and $\mathrm{CH} 2=\mathrm{Y}$ is obtained by setting the V MODE (9) to CH2, INT TRIG SOURCE (12) to CHI , TRIG SOURCE (13) to INT , and COUPLING (14) to AC or DC.
(ii) An $\mathrm{X}-\mathrm{Y}$ oscilloscope where EXT INPUT $=\mathrm{X}$ and CH l or $\mathrm{CH} 2=\mathrm{Y}$ is obtained by setting the V MODE (9) to any position, TRIG SOURCE (13) to EXT, and COUPLING (14) to AC or DC. When the V MODE (9) is set to DUAL, X-Y dual-trace operation occurs.
(18) A VARIABLE Provides continuously variable A sweep rate at PULL X10 least $1-2.5$ times between the calibrated settings selected by the MAIN A SWEEP (TIME/DIV) switch "A" sweep rate is calibrated when VARIABLE control is set to CAL. Pulling this control increases sweep rate to ten times setting of A or B TIME/DIV switch by horizontally
expanding the center division of the display.
The maximum sweep rate is $20 \mathrm{nsec} / \mathrm{DIV}$.

(19) AUTO-NORM-SINGLE-RESET

Determines the operating mode for A sweep.
AUTO: A stable display is obtained in a sweeptriggered state. When there is no trigger signal or its level is deviated, the sweep free runs at the sweep rate selected by the TIME/DIV switch. This is useful to measure the DC voltage.

NORM: Sweep is initiated by the applied trigger signal using the A triggering controls. No trace when there is no trigger signal.

SINGLE: Sweep is triggered only once when there is a trigger signal.

RESET: When the RESET button is pressed, a single display will be presented (with correct triggering). After the sweep is completed, the RESET button must be pressed again before another sweep can be displayed.

This external input terminal serves not only as external trigger signal connector, but also as CH3 input connector for triple-trace display. It is also used as an external horizontal input connector, and provides the X -axis signal for X-Y operations. See (17).

Controls horizontal position of display.
(22) DELAYED B SWEEP
(23) $\mathrm{A}-\mathrm{A}$ INTEN-B

This B TIME/DIV switch is used to select sweep rate in the DELAYED SWEEP mode of operation. Selects horizontal mode of operation.

A: Horizontal deflection is provided by A sweep.

A INTEN: Horizontal deflection is provided by A sweep. An intensified portion appears on the display during the B sweep time. This switch position provides a check of the duration and position of B sweep (delayed sweep) with respect to the delaying sweep A.

B: \quad Horizontal deflection is provided by B sweep. The intensified portion at A INTEN is displayed.
(24) DELAY TIME POSITION
(25) POWER

- Rear panel
(27) A GATE
(28) B GATE

Selects the portion to be magnified by B sweep. The A sweep deflection range is 0.5 DIV to 10.5 DIV.

Power ON-OFF switch controls power to the instrument. The pilot lamp indicates that power is on and the instrument is connected to a linevoltage source.

Grounding terminal.

Output connector providing a positive square pulse coincident with A sweep. (Option)

Output connector providing a positive square pulse coincident with B sweep. (Option)
(29) Z AXIS INPUT CRT display.
(30) FUSE 1 -amp fuses are used for 90 to 126 V lines, and 0.5-amp fuses for 194 to 250 V lines. Fuses are removed and fitted with a philips screwdriver.
(31) CHl SIG OUT Output terminal for CH signals. (Option)
(33) RECORD OUT

Output connector for the sampling output signal to record the waveform displayed on the CRT into an $X-Y$ recorder ... and for the pen lift signal. (Option)

- Bottom panel or Left side panel

CH3
POSITION

Adjusts CH3 display position. It has been set to the third DIV from the center of the graticule. Readjust as required.
(35) (Line voltage conversion plug)

The plug is inserted to the $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$, or 230 V position based on the line voltage.
(36) CHI GAIN
(37) CH 2 GAIN

CHI STEP Screwdriver adjustment for CHl amplifier DC ATT BAL balance. It must be adjusted so the trace does not shift when the CHl VOLTS/DIV switch (8) is pulled.

CH2 STEP ATT BAL

Screwdriver adjustment for CH2 amplifier DC balance. It must be adjusted so the trace does not shift when the CH2 VOLTS/DIV switch (8) is pulled.

3.2 RECORD OUT OPERATION (Option)

1. Connect the X and Y axis on the rear of the instrument to the $\mathrm{X}-\mathrm{Y}$ recorder.

The output sensitivity (gain) is $600 \mathrm{mV} / \mathrm{DIV}$ for the X -axis, and $100 \mathrm{mV} / \mathrm{DIV}$ for the Y -axis.

If the recoder has a pen-lift signal terminal, connect it with the Record Out connector of this instrument.

Fig. 3-2-1 Record out connector
2. Obtain a desplay of a waveform to be recorded on CRT screen, and adjust appropriate controls for proper amplitude and sweep rate.
3. Change the Horizontal mode to the A INTEN position, and pull the scan switch knob to set to SCAN. Now, with the controls set as described above, the delayed sweep travels on the displayed waveform in approximately 20 seconds from left to right.
4. For the easier observation, set the B sweep switch at a position between $1 / 100$ and $1 / 1000$ of the A sweep switch setting.
5. When the pen lift switch is set to ON in the $\mathrm{X}-\mathrm{Y}$ recoder, a waveform per scanning is recorded.

Fig. 1
VP-5234A

Fig. 2

Fig. 3

Fig. 4

