ONIC MEASURINE INETRUMENTE

\square Mas AB

PULSE TRAIN GENERATOR

 ZYHK 40101/

LIST OF ILLUSTRATIONS

Figure No.	Caption	Page
1.1	Pulse Train Generator ZYHK 40101	$1-1$
1.2	Pulse Examples	$1-5$
2.1	Front Panel View	$2-5$
2.2	Rear Panel View	$2-5$
2.3	80-pin Multisocket	$2-11$
2.4	External Programming	$2-13$
3.1	Flow Diagram	$3-3$
3.2	Trigger Pulse Output	$3-43$
3.3	Principle Diagram Multiplexer	$3-62$

Furthermore section 3 contains illustrations covering all plug-in cards and wiring diagrams.

Fig. 1. 1 The ZYHK 40101 Pulse Train Generator.
1.1. Application

The ZYHK 40101 Pulse Train Generator is designed for testing relay sets and similar relay equipment used in telephone systems.

Because of its versatility in programming and wide pulse range the instrument may be used wherever a pulse-generating device is required.
1.2 Description

The Pulse Train Generator employs digital techniques, resulting in simple programming and highly accurate pulse and pause times. .

The Pulse Train Generator furnishes Regular, Irregular, and Combined pulse trains.

A pulse train may be generated as a single pulse train or repetitively, with adjustable restart delay.

The basic element of the pulse train may be repeated from 1 to 99 times and may contain from 1 to 4 different pulse/pause times, in which case the Generator is programmable for four types of pulse trains.

Number of pulse/pause times in the basic element of the pulse train is selected with front-panel pushbuttons.

Pulse times, pause times, and number of basic elements in a simple pulse train are selectable with lever switches, combining rapid setting with clear indication of programmed data. Pulse trains are started by depressing front-panel pushbuttons or by an external signal.

Generator output is obtained as a switch function from two mercury-wetted reedcontact units which operate simultaneously but control separate DC circuits.

The two contact units are located on separate circuit boards which are easily replaceable, also with contact units of other types should this be desired.

Additional facilities include:
External programming of pulse times, pause times and number of basic elements in pulse train.

Output for starting another pulse train generator or triggering an oscilloscope.

Mains-voltage switching is easily carried out from the back of the instrument.

1.3 Design

The ZYHK40101 Pulse Train Generator employs semiconductors and integrated circuits. The accuracy of pulse and pause times is determined by a crystal-controlled clock oscillator. The front panel is designed for standard $19^{\prime \prime}$ rack mounting, but the instrument is supplied in a metal cassette with a detachable lid which protects the front panel during transport.

The instrument uses replaceable circuit boards. Thanks to this feature, service and repairs can be carried out quickly and at low cost, even by semi-skilled personnel.

1.4 Specifications

1.4.1 PULSE TRAIN

Defined as a series of pulses, determined by number, time (width), and spacing.

1.4.2 BASIC ELEMENT

Defined as the minimum common component of a pulse train. Consists of the same number of pulse times and pause times. All basic elements of a pulse train are identical.

The basic element may be switched to contain either 1, 2, 3 or 4 different pulse /pause times (max. 8 times). Switching is carried out with lighted pushbuttons.

1.4.3 REPETITIONS

Defined as the number of basic elements in a pulse train. Number of repetitions is selectable between 1 and 99 in steps of 1 , using easily operated lever switches (2 digits).

1.4.4 PULSE-/PAUSE TIME

Defined as the time during which the Generator's contact unit is operated/not operated.

Selection of pulse/pause time:
Time basic: x 1 ms ; 1 to 9999 ms in steps of 1 ms .

Time basic: $x .1 \mathrm{~ms} ; .1$ to 999.9 ms in steps of .1 ms .

Both pulse and pause times are selected with easily operated lever switches (4 digits).

1.5 Programming

1.5.1

With A, B, C and D denoting the Generator's 1 st, 2nd, 3 rd and 4 th pulse /pause elements and a, b, c and d denoting the number of repetitions in the 1 st, 2 nd, 3 rd and 4 th pulse trains selected, the chart overleaf lists the various types of pulse trains which the Generator can be programmed to furnish.
Please also refer to pulse examples Fig. 1.2.

1.5 .2

Number of pulse trains and number of pulse / pause elements in a basic element are selected by means of lighted pushbuttons END 1 , END 2, END 3, logically placed between the four switch groups which determine pulse and pause times.

1.5 .3

If no END buttons are depressed it is an indication that only one pulse train whose basic element contains four pulse/pause times is programmed.

1.5 .4

If one, two, or three END buttons are depressed it is an indication that two, three or four pulse trains, respectively, are permanently programmed.

1.5 .5

The number of pulse /pause times in the basic element of the pulse train is determined, in order from left to right, by the number of pulse / pause time elements counted from the time one END button is depressed till the next END button is depressed, including beginning and end.

1.5 .6

Depending on the number of pulse trains which has been programmed the process is started by pressing lighted pushbuttons START 1 , START 2, START 3, START 4.

1.6 Generator Modes

FUNCTION SELECTOR: GEN.
Used for continuous generation of regular and irregular pulse trains. a, b, c or d represent continuous generation.

PULSE TRAIN TYPE	PULSE TRAIN NUMBER			
	TRAIN 1	TRAIN 2	TRAIN 3	TRAIN 4
REGULAR	a. A	$b \cdot B$	$c \cdot \mathrm{C}$	d \cdot D
IRREGULAR 1. IRREGULAR 2. IRREGULAR 3. IRREGULAR 4.	$\begin{aligned} & a \cdot A \\ & a \cdot(A+B) \\ & a \cdot(A+B+C) \\ & a \cdot(A+B+C+D) \end{aligned}$	$\begin{aligned} & b \cdot(B+C) \\ & b \cdot(C+D) \\ & b \cdot D \end{aligned}$	$\mathrm{c} \cdot \mathrm{D}$	
COMBINED 1. COMBINED 2. COMBINED 3. COMBINED 4. COMBINED 5. COMBINED 6. COMBINED 7. COMBINED 8. COMBINED 9.	$\begin{aligned} & a \cdot A+b \cdot B \\ & a \cdot A+b \cdot B+c \cdot C \\ & a \cdot A+b \cdot B+c \cdot C+d \cdot D \\ & a \cdot A+b \cdot(B+C)+c \cdot D \\ & a \cdot A+b \cdot(B+C+D) \\ & a \cdot A+b \cdot(B+C) \\ & a \cdot(A+B)+b \cdot C \\ & a \cdot(A+B)+b \cdot(C+D) \\ & a \cdot(A+B+C)+b \cdot D \end{aligned}$			

FUNCTION SELECTOR: NORMAL

Used for generation of regular, irregular and combined pulse trains. a, b, c and d should have values from 1 to 99 .

FUNCTION SELECTOR: RESTART DELAY (ms) $\mathrm{x} 1000, \mathrm{x} 100, \mathrm{x} 10$.

Used for continuous generation of pulse trains The Generator restarts automatically at the end of a pre-set time which is measured from the moment the preceding pulse train is completed.

Delay times:
x1000: 0 to 9 sec . in steps of 1 sec .
x 100 : 0 to 900 ms in steps of 100 ms .
x 10 : 0 to 90 ms in steps of 10 ms .

1.7 Accuracy of Generated Times

Electrical control signals for the contact units are generated with an accuracy of $\pm 50 \mathrm{p} . \mathrm{p} . \mathrm{m}$.

1.8 Contact Units

The Generator has two identical contact units whose outputs connect to front panel terminals CONTACT OUTPUT 1 and CONTACT OUTPUT 2.

There is no DC path between the two contact outputs and between them and the chassis.

The contact units are simultaneously operating nonbouncing change-over contacts (mercurywetted reed relays) each of which has the following data:

1.8 .1

Breaking current: max. 2 A .
Breaking power:
Contact protection:
m. 100 VA.
rapid-acting .3 A fuse in series with contacts. Replaceable from back of instrument.

1.8 .2

Contact Operating Times:
Make contacts (C - NO).
Operate time $=$ release time $\pm .2 \mathrm{~ms}$.
Break contacts (C - NC).
Operate time $=$ release time $\pm .5 \mathrm{~ms}$.

[^0]
1.8 .4

Because the Generator's accuracy on brief pulses is not fully utilized by the standard contact circuit board, the TIME BASE switch is permanently programmed to $x 1 \mathrm{~ms}$ via a jumper on the contact circuit board.

1.8 .5

Contact circuit boards are easily replaceable from the back of the instrument. Contact units of other types, such as electronic circuits, can easily be substituted for full utilization of the Generator's brief operating times.

1.9 Trigger Outputs

1.9.1 START PULSE

Triggered by 1 st pulse of starting pulse train. Negative-going pulse, +5 to 0 V .

1.9.2 STOP PULSE

Generated at end of pulse train.
Negative-going pulse, +5 to 0 V .

1.9.3 ELEMENT PULSE

An element pulse is generated at the beginning of time measurement for pulse time or pause time.

Negative-going pulse, +5 to 0 V .
Element pulse is selected with ELEMENT
SELECTOR switch.

1.9 .4

Positions 1 to 8 mark, in that order, the placement of the element pulse at the beginning of 1 st pulse, 1 st pause, 2 nd pulse...4th pulse, 4th pause.
START PULSE, STOP PULSE and ELEMENT PULSE may be used for starting another pulse generator, or for triggering an oscilloscope.

1.10 EXT. START

With the EXT. START button depressed, the Generator will start when the EXT. START input is briefly short-circuited to 0 V (chassis).

1.11 External Programming

On the rear wall of the Generator facilities are provided for programming the following data:
a Selection of the basic element of the pulse train (pulse /pause times).
b Selection of number of repetitions for pulse trains 1 to 4.

c External starting.

Used for programming of pulse trains via punched-card reader or similar instrumen
1.11 .1

Specifications are valid on condition that the following requirements are met:
1.11 .2

Nominal mains voltage: 110, 127, 220 or 240
1.11 .3

Mains-voltage yariation: $\pm 10 \%$.
1.11 .4

Mains frequency: $50-60 \mathrm{~Hz}$.

1.11 .5

Ambient temperature: $0-45^{\circ} \mathrm{C}$.
1.11 .6

Relative humidity: 20-80\%.
1.11 .7

Power consumption: Approx. 44 VA.

1.12 Dimensions with Cover

505 mm wide.
210 mm high.
310 mm deep.
Weight: 15.1 kg .

1.13 Accessories

1.13 .1

Equipment Package: Stock No.
Mains lead
TK3-15001
Protective cover for front panel

Y1-EL1 0215
1 kit of spare fuses
1.13 .2

Separately Available:
Extender board
ZA0-26980
Multiwire connector, 80-contact

X612917/3

Fig.1.2 Pulse examples

2. OPERATING INSTRUCTIONS

2.1 Controls and Terminals

This section contains a description of:
1 Functions and uses of controls and terminals.

2 How to operate and program the Generator.

Designations refer to Fig. 2.1 (front panel) and Fig. 2.2 (rear panel).

Pull-out illustrations are used in the interests of clearness.

No.	Component	Function
1	Mains switch	Applies mains voltage to instrument.
2	Pilot lamp	Green light indicates that power is applied to instrument.
3	Selector switch FUNCTION SELECTOR Pos. : GEN. Pos. : NORMAL Pos. : x1000, x100, x10	Selects generator mode. Continuous generation of regular and irregular pulse trains. Generation of regular, irregular and combined pulse trains with limited number of pulses. Generation of regular, irregular a combined pulse trains, repeated after preset delay time.
4	Lever switch RESTART DELAY (ms) Pos.: 0 to 9 in steps of 1 0 to 9 0 to 9 0 to 9	Determines, in combination with FUNCTION SELECTOR positions $\times 1000, \times 100$ and $\times 10$, the time after which pulse trains are automatically restarted. $\begin{aligned} \mathrm{x} 1000: & 0 \text { to } 9 \mathrm{sec} . \\ \times 100: & 0 \text { to } 900 \mathrm{~ms} \\ \times 10: & 0 \text { to } 90 \mathrm{~ms} \end{aligned}$
5	Lighted pushbutton TIME BASE ms x 1 x .1	Determines time unit for pulse/pause times. Depressed, right half lighted: Time base $x .1 \mathrm{~ms}$. Released, left half lighted: Time base xl ms. Note: When using the DL3-10001 Contact Unit (inclusive of mercurywetted reed relay), the TIME BASE switch is permanently programmed in x 1 ms position via strapping on contact units.

No.	Component	Function
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	l Lever switch groups PULSE A ms PULSE B ms PULSE C ms PULSE D ms	Determine pulse time durations in basic element of pulse train. Setting: 0000 to 9999. Setting to be multiplied by TIME BASE selected.
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	Lever switch groups PAUSE A ms PAUSE B ms PAUSE C ms PAUSE D ms	Determine pause time durations in basic element of pulse train. Setting: 0000 to 9999. Setting to be multiplied by TIME BASE selected.
$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	Lever switch groups PULSE TRAIN 1 (a) PULSE TRAIN 2 (b) PULSE TRAIN 3 (c) PULSE TRAIN 4 (d)	Determine number of basic elements in programmed pulse train(s). Setting: 00 to 99.
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	Lighted pushbuttons END 1 END 2 END 3	Determine number of pulse/pause elements in basic element of pulse train and number of permanently programmed pulse trains. Pushbutton is lighted when depressed. (See Section 2.2, Programming).
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	Lighted pushbuttons START 1 START 2 START 3 START 4	These pushbuttons when depressed start generation of regular and irregular pulse trains. Left half of pushbutton lights up when button is pressed. Right half of pushbutton lights up to indicate that pulse trains are being transmitted. (See Section 2.2, Programming).
25	Lighted pushbutton EXT.START	This pushbutton when depressed cuts in EXT.START input (26) . (Lighted when depressed). May also be used to start COMBINED PULSE TRAIN manually. (See Section 2.2, Programming).
26	BNC socket EXT.START	For external starting of pulse trains. Start pulses: Negative going. Max. 100 V DC continuous.
27	BNC socket START	Negative-going pulse coincident with beginning of 1 st pulse time of pulse train (+5 to 0 V).

No.	Component	Function
28	BNC socket STOP	BNC socket ELEMENT

(21) ${ }^{22}$

Fig. 2.1 Reference numbers - front panel.

Fig. 2. 2 Reference numbers - rear panel.

No.	Component	Function
33	Power socket MAINS $50-60 \mathrm{~Hz}$	Socket for mains connection.
34	Mains-voltage change-over switch	Selects between mains voltages of $110 \mathrm{~V}, 127 \mathrm{~V}, 220 \mathrm{~V}$ and 240 V .
35	Primary mains fuse S1	2 A slow-blow for 110 V and 127 V 1 A slow-blow for 220 V and 240 V .
36	Secondary fuse S2	3 A quick-blow for 5 V supply.
37	Secondary fuse S3	1 A quick-blow for 7 V supply.
38	80-pin multisocket	Multisocket for external programming.
39	Contact unit Fuse for relay contacts	Change-over contact function pos. F12, CONTACT OUTPUT 1. .3 A quick-blow.
41 42	Contact unit Fuse for relay contacts	Change-over contact function pos. F11, CONTACT OUTPUT 2. $.3 \text { A quick-blow. }$
43	Terminal	Chassis termination.

2.2 How to Operate the Pulse Train Generator
a Make sure that the mains-voltage changeover switch has been set to your local mains voltage.
b Connect the instrument to the mains and apply power with the mains switch.
c Set the TIME BASE switch as desired (see note).
d Set the PULSE times A, B, C, D, PAUSE times A, B, C, D, REPETITIONS lever switches, and END pushbuttons for the desired pulse train as described in the Programming Chart.
e Starting REGULAR and IRREGULAR pulse trains

Select generator mode with FUNCTION SELECTOR switch. Start pulse train by pressing the START button (see Programming Chart).
f Starting COMBINED pulse trains
Select generator mode with FUNCTION SELECTOR switch.

1. Release all START buttons.
2. Depress EXTERNAL START button.
3. Depress START buttons in accordance with Programming Chart.
4. Start pulse train by releasing the EXTERNAL START button.

[^1]

Fig.2.4 External programming

2.3 External Programming

External programming of Pulse Times, Pause Times and Number of Repetitions as well as External Starting of the Generator are carried out via the 80 -pin multisocket which is accessible from the rear panel of the Generator.

BE SURE TO SET ALL FRONT-PANEL LEVER SWITCHES TO DIGIT 0 BEFORE CARRYING OUT EXTERNAL PROGRAMMING.

As shown in the sketch in Fig. 2.4, the external programming system is built up in the form of a matrix.

A digit is encoded by setting up a connection between a vertical-going switch line and a horizontal-going digit line.

Digit 0 is encoded if, on the switch line in question, no connection is made to any of the horizontal digit lines.

Numbers on the figures correspond to the terminals on the 80 -pin multisocket.

Fig. 2. 3 80-pin multisocket viewed from rear panel of Generator.

3. CIRCUIT DESCRIPTION

3.1 Introduction

This section in conjunction with Logic Flow Diagram Fig. 3.1 and detailed Circuit Description explains the general principles of the functioning of the Pulse Train Generator.

Individual circuit functions are described in the section "Detailed Circuit Description".

The detailed description comprises:

1. An explanatory description.
2. A component list.
3. A circuit diagram. A drawing showing component location of the printed wiring cards. The diagram can be unfolded for easy reference.

The individual circuit description is followed by a description of the wiring lay out of the test equipment covering inter connections as well as components and such details which are not included in the individual description of the circuits.

Circuit boards are numbered F1-F13 inclusive. Numbers immediately following circuit board numbers are connector socket terminal designations; for example, F6-22 means terminal No. 22 on circuit board F6.

Logic High state is indicated: " 1 ".
Logic Low state is indicated: " 0 ".

3.2 General Description

FUNCTION SELECTOR at NORMAL

A pulse train is started by pressing a start button or by applying an external start pulse to the EXT. START terminal of the Generator.

In either case a SET PULSE is generated to preset one or more of the flip-flops designated $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D (SELECTOR CIRCUIT on F6). Simultaneously therewith a CLEAR PULSE, F6-22, is generated for REPETITION COUNTER F9 and for PULSE/PAUSE COUNTER F10; furthermore the delay time $\Delta t_{3}, F 7$, is started, whereupon inhibit is removed from REPETITION COUNTER F9.

During the time Δt_{3} a check is made whether the preset number of repetitions has been reached. This will occur also if the number of repetitions is (0.0), by first scanning x10 and thereafter xl of the switch positions.

If the desired number is not reached, the following accurs after Δt_{3} has elapsed:
(1) A STROBE PULSE, F7-23, is generated to preset flip-flops K, L, M, N (SELECTOR CIRCUIT on circuit board F5).
(2) A CLEAR PULSE, F7-10, is transmitted to PULSE/PAUSE COUNTER F10, whereupon inhibit is removed from F10-30.
(3) Metering of the 1 st pulse time commences.

Metering is done by scanning the PULSE/ PAUSE switch groups in the sequence $x 1000$, $\mathrm{x} 100, \mathrm{x} 10, \mathrm{x} 1$ and is determined by output signals a, b on the DIGIT SCANNING counter on circuit board F7. a, b furthermore control the selection of digit in the switch group via SWITCH DRIVER circuit boards F1 and F2 and, via TIME BASE SELECTOR F3, the time base associated with the metering operation.

During metering of a pulse time, $(a, b, c)=$ ($\left.a, b,{ }^{\prime \prime} 0^{\prime \prime}\right)$. When ($\left.a, b\right)=(" 1 ", " 1 ")$, c will switch to "1"; that is, $(a, b, c)=(a, b, " 1$ ") while a pause time is being metered.

Metering of one pulse time and one pause time is carried out by scanning all combinations for (a, b, c) and is terminated when $a+b+c=$ " 0 ". Point (1) of the LOGIC FLOW DIAGRAM.

The logic signal c^{\prime}, derived from c, controls contact units F11 and F12 and hence is the time equivalent of the Generator's output signal, disregarding the delay in the contact units.

On the termination of each pulse/pause element a clock pulse derived from c, F7-18, is transmitted to flip-flops $\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ (SELECTOR CIRCUIT F5) to check whether the basic element of the pulse train is to contain more pulse/pause elements than the one just generated.

K, L, M, N successively determine the 1st, 2nd, 3 rd and 4th pulse/pause elements, and if $\mathrm{K}+\mathrm{L}+\mathrm{M}+\mathrm{N}={ }^{1} 1_{1}$ (corresponding to one of the flip-flops being preset to "1"), another pulse/pause element is to be generated immediately following the preceding one. In other words, the pulse/pause time generation loop is traversed once more.

However, if $\mathrm{K}+\mathrm{L}+\mathrm{M}+\mathrm{N}=$ " 0 ", the basic element of the pulse train is not to contain more pulse/pause elements than the one just generated.

The number of basic elements is summed in REPETITION COUNTER F9 by a clock pulse from F5-7 being fed to the counter circuit on the termination of each basic element.

The counting operation is carried out by first counting up to the preset number of tens with a 10 -divider inserted ahead of REPETITION

COUNTER F9 and thereafter counting up to the preset number of units without the 10 -divider inserted.

The 10 -divider, TIME BASE FOR REPETITION COUNTER F8, is inserted when the signal $\mathrm{k}=$ " 0 " (REPETITION CONTROL F7) and is not inserted when $k=" 1 "$. The REPETITION CONTROL circuit is controlled by the output from the REPETITION COUNTER, F9-23.

Simultaneously with the termination of a basic element (point (2) of LOGIC FLOW DIAGRAM), the PULSE/PAUSE COUNTER, F10-30, is inhibited and the delay time Δt_{3} is started whereupon a check is made whether the preset number of basic elements have been generated.

If this is not the case, the loop is traversed to start the generation of another basic element.

If the preset number of basic elements have been generated (point (3) of LOGIC FLOW DIAGRAM), REPETITION COUNTER F9 is cleared and inhibited. The REPETITION CONTROL, F7-2, simultaneously therewith transmits a clock pulse to the SELECTOR CIRCUTT, F6-19, for the purpose of scanning whether an additional pulse train has been programmed for generation immediately following the one just generated.

This will be the case if $\bar{A}+B+C+D=" 1$ " - in other words, if more than one of flip-flops A, B, C, D have been preset to " 1 " at the start of the 1 st pulse train.

When the succeeding pulse train is transmitted, a STROBE PULSE, F7-23, for flip-flops K, $\mathrm{L}, \mathrm{M}, \mathrm{N}$ (SELECTOR CIRCUIT F5) is not generated immediately after Δt_{3} has elapsed. Input data: SET K, L, M, N must first be altered in accordance with the new pulse train.

Accordingly, the delay Δt_{4} has been inserted to ensure that flip-flops A, B, C, D (SELECTOR CIRCUIT F6) will have time to change its condition and that this changed output condition arrives at the SET inputs for $\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ before the STROBE PULSE once more presets flip-flops $K, L, \cdot M, N$.

When Δt_{4} has elapsed, Δt_{3} starts again, and the new pulse train is generated in accordance with the sequence previously covered.

If $A+B+C=" 0 "$ (point (4) of LOGIC FLOW DIAGRAM) it is an indication that the generated pulse train(s) has (have) been terminated.

With the FUNCTION SELECTOR at NORMAL, the process is ended by clearing the flip-flops concerned and inhibiting the counter circuits.

FUNCTION SELECTOR at-RESTART DELAY
Metering of the time for automatic restart is carried out by means of PULSE/PAUSE. COUNTER F10. Metered time is determined by RESTART DELAY switch in conjunction with the $\times 1000, \times 100$ and $\times 10$ positions of the FUNCTION SELECTOR.

Metering of the restart time commences if the signals $\mathrm{s}=$ " 1 " (CP GENERATOR GATE CONTROL F5) and $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}={ }^{10} 0^{11}$ simultaneously therewith. This occurs when the last pulse train is terminated and the signal at F'5-2, controlled by the FUNCTION SELECTOR, is " 1 ".

When the restart time has elapsed, the PULSE/ PAUSE COUNTER, F10-23, generates an output pulse which causes s to be briefly " 0 ", thus closing CP GATE F4. The output pulse, F1023, simultaneously therewith functions as another SET PULSE, F6-5, for A, B, C and D and as a clear pulse for the TIME BASE circuit, F3-2, REPETITION COUNTER, F925, and PULSE/PAUSE COUNTER, F10-25, via F7-10 from F6-3.

As will appear from the LOGIC FLOW DIAGRAM, the Generator will now traverse the same loops as previously and in so doing repeat the pulse train(s) transmitted.

FUNCTION SELECTOR at GEN.

In this position, the F5-2 signal is constantly " 0 " via the FUNCTION SELECTOR.
s is identical with $A+B+C+D$, which means that CP GATE F5 will admit clock pulses as long as one of flip-flops A, B, C or D is preset. Since the REPETITION COUNTER, F9-30, is inhibited simultaneously therewith, likewise via the FUNCTION SELECTOR, the Generator will transmit pulses continously.

3.3 Detailed Circuit Description

3.3.1 DR4-20003: SWITCH DRIVER F1/F2

The two SWITCH DRIVER circuits are completely identical.

The SWITCH DRIVER circuits perform the function of determining, based on input data $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\overline{\mathrm{K}}, \overline{\mathrm{KL}}, \overline{\mathrm{KLM}}, \overline{\mathrm{KL} \overline{M N},}$ the scanning of the lever switches for the determination of pulse/pause times and, based on data K and $A, \bar{A} B, \bar{A} \bar{B} C, \bar{A} \bar{B} \bar{C} D$, the scanning of the lever switches for number of REPETITIONS

Each of the two SWITCH DRIVER circuit boards comprises two separate circuits, one for CONTROL OF PULSE/PAUSE DIGITS, the
other for CONTROL OF REPETITION DIGITS.
One circuit board covers one half of the switch groups, the other one covers the remaining half.

The a, b, c outputs of DIGITS SCANNING on F7 are divided up into the combinations possible by gates IC1, IC2, IC3 and IC4, whereupon the combination is strobed to the respective switches via gates IC6, IC7, IC8 and IC10.

The gates are controlled from TRIGGER PULSE GENERATOR F8 which determines the scanning sequence. Scanning sequence is K , L, M, N.
The same principle applies to CONTROL OF REPETITION DIGITS.

A pulse/pause group is determined as follows:

	Pulse Switches				Pause Switches			
abc	$\times 1000$	$\times 100$	$\times 10$	$\times 1$	$\times 1000$	$\times 100$	$\times 10$	$\times 1$
000	activ- ated							
100		activ- ated						
010			activ- ated					
110				activ- ated				
001					activ- ated			
101						activ- ated		
011							activ- ated	
111								activ- ated

All pulse/pause groups determined as follows:

	A Pulse/Pause	$\begin{gathered} \mathrm{B} \\ \text { Pulse/Pause } \end{gathered}$	$\begin{gathered} \text { C } \\ \text { Pulse/Pause } \end{gathered}$	D Pulse/Pause
1000	activated			
0100		activated		
0010			activated	
0001				activated

Repetitions determined as follows:

$\xrightarrow{-1}$		Pulse Train 1		Pulse Train 2		Pulse Train 3		Pulse Train 4	
		x 10	x 1	$\times 10$	x 1	$\times 10$	p^{x}	x 10	x 1
0 1	1000	actv.	actv.						
0 1	0100			actv.	actv.				
0 1	0010					actv.	actv.		
1 0 1	0001							actv.	actv.

DR4-20003: SWITCH DRIVER F1/F2.
Electrical parts list.

DR4-20003: SWITCH DRIVER F1/F2. Electrical parts location.

3.3.2 DN7-20001: TIME BASE UNIT F3

This circuit performs the function of generating, based on the clock oscillator, the clock pulses required for measuring out pulse times, pause times and automatic restart delay.

The circuit board carries ten-dividers for deviding the clock frequency down and circuits for selection of TIME BASE.

The separate circuit SWITCHING BETWEEN TIME BASE 1 ms AND .1 ms determines if the CP from CLOCK OSCILLATOR terminal 2 of F4 $(10 \mathrm{kHz} \sim .1 \mathrm{~ms})$ is to be divided by a factor of 10 in IC8 or fed direct to the first one of ten-dividers IC4, IC3, IC2, IC1. "1" at terminal 8 corresponds to TIME BASE $\times 1 \mathrm{~ms}$; " 0 " corresponds to $\times .1 \mathrm{~ms}$.

Output from the divider chain, terminal 1 of IC4, is fed to gate circuit TIME BASE SELECT OR FOR PULSE/PAUSE GENERATION. Output from terminal 1 of IC3 is fed to gate circuit TIME BASE SELECTOR FOR AUTOMATIC RESTART DELAY. CP output, terminal 24, is determined by input data (a, b), $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D})$, and the logic level at terminals $27,28,29$ is determined by the $\times 1000$, $\times 100$, $x 10$ positions of FUNCTION SELECTOR 011.

After each pulse/pause time has been measured out - that is, when (a, b) $=(" 1$ ", "1"), the divider chain is zero set by a CLEAR pulse from terminal 8 of PULSE/PAUSE CONTROL F7.

While pulse/pause times are being generated, $A+B+C+D=" 1 "$ and CP output is determined by:

Since maximum output switching rate is determined by CONTACT UNIT F11/F12, the function of the switch designated SWITCHING BETWEEN TIME BASE x1 AND $x .1 \mathrm{~ms} 09$ is determined by the circuit board in use.

As regards locking, see CONTACT UNIT F11/F12, section 3.3.9.

	CP Output	
a	b	Terminal 8: "1" (x1 ms)
0	0	Terminal 8: "0" $(\mathrm{x} .1 \mathrm{~ms})$
0	1000 ms	100 ms
1	0	100 ms
1	1	

While the RESTART DELAY TTME is being generated, $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}={ }^{\prime \prime} 0$ " and CP OUTPUT is determined by:

RESTART				
DELAY (ms)	Terminal 27 29		CP Output Terminal 24	
$\times 1000$	1	0	0	1000 ms
$\times 100$	0	1	0	100 ms
$\times 10$	0	0	1	10 ms

Cir. Ref.	Qty	Stock No.	Description	Manufacturer (Subject to change)
c1-3	3	MY2-23667	$0,1 \mu \mathrm{~F} \quad 10 \%-250 \mathrm{~V}$ DC	Philips
$\mathrm{F}_{\mathrm{ICl}}^{\mathrm{Cl}}$	5	NY1-23410	SN 7490N	
HC5	1	MY1-23413	SN 7420N	
IC6-7	2	MY1-23414	SN 7410N	
IC9+11	2	MY1-23415	SN 7400N	
HClO+12	2	MY1-51111	SN 7404N	
R1-4	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { MY2-31651 } \\ & \text { NL2-66714 } \end{aligned}$	$1 \mathrm{k} \Omega \quad 5 \% \quad 1 / 8 \mathrm{~W}$ Printed Circuit Board	Beyschlag Elmi

DN7-20001: TIME BASE UNIT F3.
Electrical parts list.

DN7-20001: TIME BASE UNIT F3.
Electrical parts location.

This circuit board carries a CLOCK OSCTLLATOR circuit, an EXTERNAL START TRIGGER CIRCUIT and a START PULSE GENERATOR.

CLOCK OSCILLATOR

The generator is crystal controlled. It is composed of dual-input nand gates.

The output of the 1 MHz oscillator is controlled on/off via IC3, CP GATE, in turn controlled by the s-signal from the CP GENERATOR GATE CONTROL (terminal 10 of F5) (see simplified description of BASIC ELEMENT SELECTOR F5). The 1 MHz signal is divided by ten in IC5, and a 100 kHz clock frequency of $2: 8$ pulse/pause ratio is taken off at terminal 2 .

EXTERNAL START
TRIGGER CIRCUIT
The generator is started externally by connecting terminal 22 to 0 V . The voltage jump is differentiated into a pulse which triggers monostable multivibrator Q_{1}, Q_{2}. Output from Q_{2} is inverted in Q3 and transmitted to IC2 of the START PULSE circuit.

START PULSE

The EXTERNAL START pushbutton (08) controls the flip-flop composed of IC1. On the EXTERNAL START button being depressed, terminal 25 will be at 0 V , with the result that pins 1,2 and 3 of 1 C 2 , and pins 4,5 and 6 of IC2 permit the external start pulse to pass through to terminals 8 and 19 . Releasing the EXTERNAL START button causes a pulse to be generated whose duration is determined by R19 and C9.

This pulse is employed when starting the COMBINED PULSE TRAIN manually.

Cir. Ref.	Qty	Stock No.	Description	Manufacturer (Subject to change)
Cl	1	MY2-23978	1,5 nF $5 \% \quad 125 \mathrm{~V}$ DC	Philips
C2	1	MY2-23955	10 nF , $10 \% 250 \mathrm{~V}$ DC	-
C3-5	3	MY2-23667	0,1 $\mu \mathrm{F} \quad 10 \% 250 \mathrm{~V}$ DC	-
C6	1	MY2-23957	22 nF 10\% -	-
C7-8	2	MY2-11876	$10 \mathrm{pF} \pm 1 \mathrm{pF} \quad 63 \mathrm{~V}$	(Siemens)
C9	1	MY2-23995	$1 \mathrm{nF} \quad 5 \% \quad 125 \mathrm{VDC}$	
C10	1	MY2-23991	$220 \mathrm{pF} 5 \% \quad 200 \mathrm{~V}$	
$\left\lvert\, \begin{aligned} & \text { ICl-4 } \\ & +7 \end{aligned}\right.$	5	MY1-23415	SN 7400N	
IC5	1	MY1-23410	SN 7490N	
IC6	1	MYI-51554	US 7438A	Spraque
MI	1	MY7-51124	2422-518-00001 Socket for crystal	Philips
Q1-2	2	MYI-23467	2N 4.126	
Q3	1	MYI-23466	2N 4124	
$\left\lvert\, \begin{aligned} & \mathrm{R}_{2}-3+ \\ & 9 \neq 11 \end{aligned}\right.$	4	MY2-31535	$3.3 \mathrm{k} \Omega 5 \%-1 / 3 \mathrm{~W}$	Beyschlag
R4	1	MY2-31557	$220 \mathrm{k} \Omega$	-
R5	1	MY2-31536	$3,9 \mathrm{k} \Omega$	-
R6+R13	2	MY2-31540	$8,2 \mathrm{k} /{ }^{\text {d }}$	1 -
R7	1	MY2-31532	$1,8 \mathrm{k} \Omega$	-
R8	1	MY2-31534	2,7k	-
R10+R1	2	MY2-31537	$4,7 \mathrm{k} \Omega$	-
R 12	1	MY2-31547	33 k 8	-
R15+16	2	MY2-51531	470 ת $5 \% 1 / 8 \mathrm{~W}$	-
R17-18	2	MY2-31529	$1 \mathrm{k} \Omega-1 / 3 \mathrm{~W}$	-
R19-20	2	MY2-31517	100 - -	-
XI	1	MY1-51123	$1 \mathrm{MHZ} \pm 10 \mathrm{ppm}$. serie resonans	-
21	1	MY1- 23586	ZP $5.65 \% 1 / 4 \mathrm{~W}$	ITT
	1	NL2-66715	Printed Circuit Board	Elmi

DN3-10001: CLOCK OSCILLATOR F4.
Electrical parts list.

DN3-10001: CLOCK OSCILLATOR F4. Circuit diagram.

3．3．4 DR4－20004：BASIC ELEMENT
 SELECTOR F5

This circuit controls the apperance of the basic element．The basic element may consist of from one to four different pulse／pause elements，below designated $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N ． The K，L， M and N signals are generated by the four flip－flops（IC1 and IC2）of the selector circuit and are used to activate the four groups of PULSE／PAUSE switches on the front panel． The K signal controls the first pulse／pause switch group farthest to the left on the front panel，L the next group，and so on．
Which ones of the four pulse／pause elements are to be used in a given pulse train depends on
（1）which START button is depressed．
（2）which END buttons are depressed．
E， F and／or G levels in SELECTION OF PULSE／PAUSE ELEMENTS denote when END 1，END 2 and／or END 3 are depressed．In conjunction with A，B，C，D（PULSE TRAIN SELECTOR F6）they determine SET data for the $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N flip－flops．

The table below shows how the basic element is composed of pulse／pause elements．

END 1	END 2	END 3	START 1	START 2	START 3	START 4
E	F	G	A	$\overline{\text { AB }}$	ABC	$\overline{A B C D}$
1	1	1	K	L	M	N
1	1	0	K	L	$\mathrm{M}+\mathrm{N}$	
1	0	1	K	$\mathrm{L}+\mathrm{M}$	N	OV N
1	0	0	K	$\mathrm{L}+\mathrm{M}+\mathrm{N}$	情V	VIS N
0	1	1	$\mathbf{K}+\mathbf{L}$	M	N	）
0	1	0	$\mathbf{K}+\mathrm{L}$	$\mathrm{M}+\mathrm{N}$	VITVIVITVIII	， N
0	0	1	$\mathbf{K}+\mathbf{L}+\mathrm{M}$	N	VII N ）	） N
0	0	0	$\mathrm{K}+\mathrm{L}+\mathrm{M}+\mathrm{N}$	这	第	N

The shaded area in the chart shows that the pulse／pause element N is generated in the event of incorrect programming of the Generat－ or．

The SELECTION OF PULSE／PAUSE ELEMENTS circuit generates a SET PULSE for flip－flops $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N ．

The network is composed of dual－input nand gates．The SET PULSES are determined by the following logic expressions：
$\operatorname{SETK} \mathrm{S}_{\mathrm{K}}=\mathrm{A}$
$\operatorname{SET} L \Rightarrow S_{L}=\overline{\overline{(A B) E} \cdot \overline{A E}}$
$S E T M S_{M}=\overline{S_{L} \overline{\bar{F}} \cdot \overline{F \cdot(\overline{\overline{A B B}) \bar{E} \cdot(\overline{\overline{A B C}) E}}}}$

SET N $S_{N}=\overline{\overline{\overline{S_{\bar{M}}^{\bar{G}}} \cdot(\overline{\overline{A B C D}})} \cdot \overline{\overline{S_{M}} \cdot\left(\overline{\overline{\bar{A} \bar{B} C}) \cdot(\overline{\bar{A} B}) \cdot \overline{S_{X}}}\right.}}$

Set information is fed to the four flip－flops via STROBE PULSE，terminal 12．This STROBE PULSE is generated at F_{7} at the end of Δt_{3} if another basic element is to be generated．

CP GENERATOR GATE CONTROL S

S controls the CP GATE on F4 via terminal 10 and keeps the time base at F3 cleared when no pulse train is being generated．With the function switch at NORMAL，S is identical with $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ ；this means that the CP GATE on F4 will admit clock pulses when a pulse train is measured out，$S=" 1$＂，and otherwise be closed，$S=" 0 "$ ．

With the function switch in the RESTART DE－ LAY position，$S=" 1$＂both while pulse／pause times are measured out and while the RE－ START DELAY time is measured out．

Immediately following the end of AUTOMATIC RESTART DELAY，S goes briefly to＂ 0 ＂．

SELECTOR CIRCUIT

SET K，L，M and N are strobed in on the four flip－flops，IC1 and IC2，thus presetting them．
$\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N are clocked in via IC3 and IC4 from terminal 13.

Composite control signals $\bar{K}, \overline{\bar{K} L}, \overline{\mathrm{~K}} \overline{\mathrm{LM}}$ and $\overline{\mathrm{RLIMN}}$ are generated by means of gates IC3， IC4 and IC10．

The clock pulse at terminal 13 is identical with the pulse（C）（PULSE PAUSE CONTROL， F7）which checks whether a pulse or a pause element is being scanned．Thus，the clock pulse is generated every time a pulse／pause element is terminated．When the basic element is terminated，a clock pulse is transmitted to the repetition counter and a brief pulse is transmitted via terminal 4 to terminal 30 of F7．Thereafter Δt_{3} is started．

During the time Δt_{3} it is determined whether the basic element just transmitted was the last one in a pulse train；if not，a pulse is generated on circuit board F7（STROBE K，L，M，N， terminal 23）at the end of Δt_{3} ，and the process is repeated．

If it is determined during the time Δt_{3} that the basic element transmitted was the last one in a pulse train and that no more basic elements are to be transmitted，$A=B=C=D=" 0 "$ $(A+B+C+D=" 0 ")$ ，which concludes the process．

If another pulse train is to be transmitted, a SET PULSE for the four flip-flops will not be generated immediately after Δt_{3}. The input information must be modified before this is done. Accordingly, a pause, Δt_{4}, has been introduced while A, B, C and D flip-flops on F6 switch over and the output levels are transmitted. When Δt_{4} is terminated, Δt_{3} is started; meanwhile a check is made whether the basic element is to be transmitted zero
times; only thereafter will the STROBE for $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N be generated.

In this way it is ensured that an incorrect pulse will not be generated in case the basic element is to be transmitted zero times. K, L, M and N are zero while this check is made, and in consequence therefore IC6 on F7 is cut off.

DR4-20004: BASIC ELEMENT SELECTOR F5. Electrical parts list.

DR4-20004: BASIC ELEMENT SELECTOR F5.
Electrical parts location.

DR4-20004: BASIC ELEMENT SELECTOR F5.
Circuit diagram.

3.3.5 DR4-20002: PULSE TRAIN
 SELECTOR F6

The PULSE TRAIN SELECTOR comprises two separate sections: SELECTION OF PULSE TRAIN and SELECTOR CIRCUIT.

SELECTION OF PULSE TRAIN

This section comprises four identical circuits. These generate SET pulses for the flip-flops of the following SELECTOR CIRCUIT which determines the composition of the pulse train to be transmitted.

A SET pulse is generated
(1) when one of START buttons $1,2,3$ and 4 is depressed,
(2) by the EXT. START pulse when the EXT. START button and one or more START buttons 1, 2, 3 and 4 have previously been depressed together,
(3) when the EXT.START button is released after START buttons $1,2,3$ or/and 4 have previously been depressed together,
(4) after the end of the automatic restart delay time when START buttons $1,2,3$ or/and 4 have previously been depressed together.

Depressing for instance START 1 will change the state of the flip-flop composed of IC10. On account of the time delay caused by R1-C5, the output at pin 6 of IC1 will generate a SET A pulse to preset pin 15 of IC4 to " 1 ". If, on the other hand, START 1 remains depressed, a pulse from AUTO RESTART or EXT.START, as the case may be, will pass through to pin 5 of IC1, thus serving as a SET A pulse.

The circuits for START buttons 2, 3 and 4 function in the same manner as described for START 1 above.

Pulses SET A, B, C and D are fed to IC3, which generates the CLEAR REPETITION COUNTER pulse, terminal 22 , and starts the time delay Δt_{3} at terminal 3 of $F 7$.

SELECTOR CIRCUIT

The selector circuit comprises four flip-flops, IC4 and IC5.

The output of each of these controls a pulse train. When for instance $A=" 1$ ", the lst pulse train is transmitted. As a result of this, $\mathrm{k}=$ " 1 " (right-hand lamp of START 1 is on) and the output at terminal 13 goes to " 0 " so that the repetition switches associated with the 1 st pulse train can be scanned.

Furthermore, the output from terminal 10 is fed to the BASIC ELEMENT SELECTOR on F'5 which determines the composition of the basic element in the 1st pulse train.

The other flip-flops operate in the same manner.

In order to ensure that only the control signals for one pulse train will be sent at a time, the output signals from the four flip-flops are transmitted in this sequence: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$. Correct sequence is secured by IC7, IC8, IC 9 and IC14.

At the end of a pulse train, a pulse from REPETITION CONTROL, terminal 19 of F7, arrives at terminal 19.

The signal is fed through four gates, IC7 and IC8, and serves as CP for the four flip-flops.

DR4-20002: PULSE TRAIN SELECTOR F6.
Electrical parts list.

DR4-20002: PULSE TRAIN SELECTOR F6.
Electrical parts location.

DR4-20002: PULSE TRAIN SELECTOR F6.
Circuit diagram.
3.3.6 DR4-20001: PULSE PAUSE CONTROL F7

This circuit Loard comprises three separate circuits: REPETITION CONTROL, SET-RESET FUNCTIONS and DIGIT SCANNING.

REPETITION CONTROL

This unit contains flip-flop IC7a which generates a signal " k " to control the ten-divider circuit on circuit board F3. See also LOGIC FLOW DIAGRAM, section 3.1 . At the start of a pulse train, "k" = "0".

This involves that only the tens repetition switch (x 10) can be activated. The ten-divider in repetition counter F3 is inserted, and only every tenth CP will pass from TIME BASE; FOR REPETITION COUNTER F8 to REPETITION COUNTER F9.

When the programmed number of repetitions has been counted, a pulse is transmitted from terminal 9 of TIME BASE FOR REPETITION COUNTER F8.

This will cause " k " to go to " 1 " and allow the units repetition switch (x1) to be activated.

At the same time, the ten-divider is switched off, and TIME BASE FOR REPETITION COUNTER and REPETITION COUNTER will now count each basic element. The wanted numbers of basic elements are counted, and another output is delivered from terminal 9 of TIME BASE IREPETITION COUNTER F8. Since " k " is now "1", the change of level is fed to PULSE TRAIN SELECTOR F6 via terminal 2, whereupon " k " once more goes to " 0 ".

DIGIT SCANNING

IC 9 and IC5 constitute a 3 -bit synchronous counter. The three bits - a, b and c-are used for determining which one of the eight digits of a pulse/pause element is to be activated.
Furthermore, a and b control TIME BASE SELECTOR FOR PULSE PAUSE GENERATION on circuit board F3.

Control is performed as tabulated below:
abc

000		1st digit	time base $\times 1000$
100	Pulse	2nd digit	time base x 100
010		3 rd digit	time base $\mathrm{x} \quad 10$
110		4th digit	time base $\mathrm{x} \quad 1$
0017		1st digit	time base $\times 1000$
101	Pause	2nd digit	time base x 100
011		3rd digit	ime base $\mathrm{x} \quad 10$
111		4th digit	time base x

Furthermore, c is used as CP for BASIC ELEMENT SELECTOR on circuit board F5.

Since c is " 0 " both when a pause time is measured out and when the instrument is not generating a pulse train, c must be combined with a signal to indicate whether or not a pulse train is being transmitted.
When $\mathrm{K}+\mathrm{L}+\mathrm{M}+\mathrm{N}=$ " 1 ", a pulse train is transmitted. This means that the output signal c^{\prime} is generated as
$\left(\overline{\mathrm{K}+\mathrm{L}+\mathrm{M}+\mathrm{N}) \overline{\mathrm{c}}}=\mathrm{c}^{\prime}\right.$. Because of the time delay in the instrument, c must be delayed before being gated with ($\mathrm{K}+\mathrm{L}+\mathrm{M}+\mathrm{N}$).

This occurs via R7, C8 and IC7b, thus avoiding the apperance of incorrect pulses at terminal 20. Contact circuit boards F11 and F12 are controlled in synchronism with this signal.

$$
c^{\prime}=\overline{(\mathrm{K}+\mathrm{L}+\mathrm{M}+\mathrm{N}) \cdot \overline{\mathrm{c}_{\text {delayed }}}}
$$

SET/RESET FUNCTIONS

This circuit contains two delay circuits which generate two delay times, Δt_{3} and Δt_{4}. These delays have been introduced to counteract transmission delays in the instrument.

Delay time Δt_{3} is started by the following events:
(1) A signal at terminal 6 indicating that one or more pulse trains have been set up at F6 (A, B, C or D). This signal is also used to clear PULSE/PAUSE COUNTER F10.
(2) A signal at terminal 30 indicating that a basic element has been terminated.
(3) A signal $\left(\mathrm{a}_{4}\right)$ from the output of IC2, generated by Δt_{4} (when another pulse train has been programmed).

When Δt_{3} ends, a brief pulse (a_{1}) is generated. During the time Δt_{3} a check is made whether the wanted number of repetitions of a basic element, programmed on the front panel, has been reached; this also applies if (0.0) repetitions have been programmed.

Delay time Δt_{3} must be long enough so that the repetition counter will have time to generate both $\times 10$ and $x 1$ outputs and transmit them to IC7a (k).

If no " 1 " output from the repetition counter is registered during the time Δt_{3} it is an indication that the pulse train has not ended. A STROBE pulse is generated at terminal 23 and fed to flip-flops K, L, M and N on $F 5$.

PULSE/PAUSE COUNTER F10 is cleared via terminal 10 whereupon the inhibit on the PULSE/PAUSE COUNTER is cancelled via terminal 7.

If termination of the pulse train is registered, the REPETITION CONTROL IC8 output goes to " 0 ", preventing IC5 from generating a_{6}, so that the Generator stops (with the FUNCTION SELECTOR 011 in the NORMAL FUNCTION position).

If ($\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$) from terminal 11 remains " 1 " after a pulse train has ended it is an indication that another pulse train has been programmed. In this case delay time Δt_{4} is generated by means of a_{2} whilst the output levels of the new
pulse train data A, B, C, D are transmitted to the SET inputs of K, L, M and N. At the end of $\Delta t_{4}, \Delta t_{3}$ starts up once more, and the new pulse train is generated.

Terminal 9 of INHIBIT PULSE/PAUSE COUNTER is " 0 " when the CP gate is closed in the interval between the individual basic elements, and in the time interval Δt_{3}. Terminal 8 of CLEAR TIME BASE gives " 0 " when the CP gate is closed, after each pulse and pause time, and after automatic restart delay.

-]

DR4-20001: PULSE PAUSE CONTROL F7
Electrical parts location.

3.3.7 DH1-20001: TRIGGER PULSE
 GENERATOR F8

This circuit board comprises circuits for the three types of trigger pulses, a network for selection of trigger pulses and a TIME BASE FOR REPETITION COUNTER control.

TIME BASE FOR REPETITION COUNTER

This circuit functions as a ten-divider for clock pulses for REPETITION COUNTER F9. Clock pulses for the time base unit are generated each time a basic element has been terminated. Depending on whether a x 10 or a x 1 repetition switch is being scanned, either every tenth or all clock pulses are fed through to REPETITION COUNTER F9.

TIME BASE FOR REPETITION COUNTER is controlled at terminal 16. When the control signal "k" is "0", clock pulses are fed to decade counter IC8. When " k " is "1", IC8 is maintained reset, and clock pulses are fed via IC4 direct to terminal 9 .

TRIGGER OUTPUTS:

TRIG. START and TRIG. STOP
The two pulses are derived from the signal $A+B+C+D$, which is " 1 " when a pulse train is transmitted, and " 0 " either in the no-signal condition or during the RESTART DELAY time.

The TRIG. START signal is generated on the positive gradient and TRIG. STOP on the negative gradient of the $A+B+C+D$ signal, terminal 30 .

The ELEMENT pulse is generated, depending on the setting of ELEMENT SELECTOR 0142, at the beginning or end of the 1 st , $2 \mathrm{nd}, 3 \mathrm{rd}$ or 4 th pulse/pause time of the basic element (see section 2). The SELECTION OF TRIGGER PULSE circuit determines the time placement of the ELEMENT pulse in the basic element of the pulse train.
Signals $\overline{\mathrm{K}}, \overline{\bar{K} L}, \overline{\bar{K} \bar{L} M}$ and $\overline{\bar{K} \bar{L} \bar{M} N}$, which are "0" while the 1st, 2nd, 3rd and 4 th pulse/pause elements are being measured out, in conjunction with the setting of 0142 determine which level changes for c^{\prime} are to pass through to 8input gate IC2 and so generate an ELEMENT pulse. c' also controls contact circuit boards F11 and F12.

The START, STOP and ELEMENT pulses are identical in shape and generated in identical circuits.

Fig. 3.2
T_{1} and T_{2} are circuit boards for the START pulse, determined by time constants (R15/R16)C3 and R17. C3, respectively.

Cir. Ref.	Qty	Stock No.	Description	Manufacturer (Subject to change)
$\mathrm{Cl}+\mathrm{C} 2$	2	MY2-23955	$10 \mathrm{nF} \quad 10 \% 250 \mathrm{~V} \mathrm{DC}$	Philips
C4	1	MY2-23669	0,47 $\mu \mathrm{F}$ 10\% -	-
C5+C6	2	MY2-23955	$10 \mathrm{nF} \quad 10$ \% -	-
C8	1	MY2-23669	$0,47 \mu \mathrm{~F} \quad 10 \%-$	-
C9+C10	2	MY2-23955	10 nF - -	-
C12	1	MY2-23669	$0,47 \mu \mathrm{~F}$ - -	-
$\left\|\begin{array}{l} \mathrm{C13}+\mathrm{C} \\ 14+\mathrm{Cl} 5 \end{array}\right\|$	3	MY2-23667	$0,1 \mu \mathrm{~F}$	
$\left\lvert\, \begin{aligned} & \mathrm{C} 3+\mathrm{C7} \\ & +\mathrm{C} 11 \end{aligned}\right.$	3	MY2-23979	$2.2 \mathrm{nF} \quad 5 \% 125 \mathrm{~V}$ DC	Philips
IC1	1	MY1-51 111	SN 7404N	
IC2	1	MY1-51550	SN 7430N	
IC3-4	2	MY1-23415	SN 7400N	
IC5-7	3	MY1-23414	SN 7410N	
IC8	1	MYI-23410	SN 7490N	
109-11	3	MY1-51111	SN 7404 N	
IC12	1	MY1-23415	SN 7400N	
$\left\lvert\, \begin{aligned} & Q 1+Q 3+ \\ & Q 5 \end{aligned}\right.$	3	MY1-23466	2N 4124	
$\left\|\begin{array}{l} Q 2+Q 4+ \\ Q 6 \end{array}\right\|$	3	MY1-23468	2N 4401	
R1-R8	8	MY2-31651	$1 \mathrm{k} \Omega \quad 5 \% 1 / 8 \mathrm{~W}$	Beyschlag
$\left\|\begin{array}{l} \mathrm{R} 13+\mathrm{R} \\ 19+\mathrm{R} 25 \end{array}\right\|$	3	MY2-51529	1008 - -	-
$\left\|\begin{array}{l} \mathrm{R} 14+\mathrm{R} \\ 17+\mathrm{R} 20 \\ +\mathrm{R} 23+\mathrm{R} \\ 26+\mathrm{R} 29 \end{array}\right\|$	6	MY 2-31657	$10 \mathrm{k} \Omega$ - -	-
$\left\lvert\, \begin{aligned} & \mathrm{R} 16+\mathrm{R} 2 \\ & \mathrm{R} 28 \end{aligned}\right.$	3	MY2-51532	560 - -	-
$\left\|\begin{array}{l} R 18+R \\ 24+R 30 \end{array}\right\|$	3	MY2-31541	$10 \mathrm{k} \Omega$ - $1 / 3 \mathrm{~W}$	-

DH1-20001: TRIGGER PULSE GENERATOR F8.
Electrical parts list (1).

Cir.	Oty	Stock No.	Description	Manufacturer (Subject to changel
$\left\|\begin{array}{c} \mathrm{R} 15+\mathrm{R} \\ 21+\mathrm{R} 27 \\ \\ 21+22+ \end{array}\right\|$	$\begin{aligned} & 3 \\ & 3 \\ & 1 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { MYI-23586 } \\ & \text { NL2-66718 } \end{aligned}\right.$	adj. $2 P 5,6 \quad 5 \% \quad 1 / 4 W$ Printed Circuit Board	$\begin{aligned} & \text { ITT } \\ & \text { Elmi } \end{aligned}$

DH1-20001: TRIGGER PULSE GENERATOR F8.
Electrical parts list (2).

DH1-20001: TRIGGER PULSE GENERATOR F8. Electrical parts location.

3.3.8 DH2-20001: COUNTER F9/F10

Two counter circuit boards are used.

One of them, F10, is used in measuring out pulse and pause times; the other one, F9, for counting the number of basic elements in the pulse train.

Each counter circuit board is composed of a decade counter, a BCD COMPARATOR a DECIMAL TO BCD CONVERTER and two monostable multivibrators for generating OUTPUT and CLEAR PULSES.

The nine input terminals are fed from MULTIPLEXER F13, in turn controlled from one of the front-panel lever switches. At the start, the PULSE/PAUSE COUNTER will be in the 0000 position. On the arrival of a number of clock pulses corresponding to the input data from the multiplexer, the comparator output pin 6 of IC7 - will change to " 0 ", causing pin 13 of IC8 to change to " 1 ".

If " 1 " is also present at pins 1 and 2, an output pulse will be generated at terminal 23 when the comparator changes its level. The output pulse also generates a clear pulse whose duration is $\Delta t,\left(\Delta t_{1}\right.$ or $\left.\Delta t_{2}\right)$.
This clear pulse resets the decade counter IC1 and cuts off the output from the BCD comparator (pin 1 of IC8) during the time Δt. This prevents undesired output pulses in case of a changed combination from the multiplexer circuit board - in other words, in case of a change in the lever switch settings. If none of the nine inputs to the DECIMAL-TO-BCD CONVERTER is " 1 ", output from the BCD comparator will be present when the decade counter IC1 is reset. Output from the circuit board (terminal 23) when the clear pulse has ended is prevented by an inhibit level at pin 2 of IC8.

This condition exists when a lever switch is in the " 0 " position.
Δt limits the rate at which it is possible to scan through a number of lever switches all of which are in the 0000 position.

DH2-20001: COUNTER F9/F10.
Electrical parts list.

DH2-20001: COUNTER F9/F10.
Electrical parts location.

DH2-20001: COUNTER F9/F10.
Circuit diagram.

3.3.9 DL3-10001: CONTACT UNIT F11/F12

The two contact units, F11/F12, are identical and operate in parallel in regard to time. They are controlled from the same electrical signal (c') PULSE/PAUSE CONTROL, F7, via circuit board F8.

Each circuit board consists of a mercurywetted reed relay and driver transistors Q_{1} and Q_{2}.

The relay contacts are the Generator's output terminals. They are secured against overloads by fuse S1, located on the circuit board. Relay
operating and release times are adjusted to minimum pulse distortion by means of resistors R3 and R2 + R3, respectively.

Since a mechanical relay cannot function with full accuracy in times shorter than $5-10 \mathrm{~ms}$, the TIME BASE switch is electronically locked in the $x 1 \mathrm{~ms}$ position, via a strap between terminals 30 and 31 of the circuit board. The TIME BASE switch can be made to function in the $x .1 \mathrm{~ms}$ position in the following manner:

Remove the strap from between terminals 30 and 31 . On both contact units connect terminals 14 and 15 and terminals 18 and 19 together.

DL3-10001: CONTACT UNIT F11/F12.
Electrical parts list.

DL3-10001: CONTACT UNIT F11/F12. CONTACT UNIT F11/F12.
Electrical parts location.

DL3-10001: CONTACT UNIT F11/F12.
Circuit diagram

3.3.10 DR2-10001: MULTIPLEXER F13

The MULTIPLEXER circuit transmits information from the front-panel LEVER SWITCHES and from the multiconnector on the Generator's rear panel to counter circuits F9, F10.

The MULTIPLEXER circuit board contains two functions. One of them transmits information to counter circuit F10 for measuring out pulse/ pause times. The other transmits information to counter circuit F9 for counting numbers of repetitions.

The same scanning principle is used in the two circuits. Fig. 3.3 shows the principle employed for measuring out pulse/pause times.

The circuit consists of triple-input nand gates. In each of them, the input is connected to:
(1) the top row of LEVER SWITCHES,
(2) the bottom row of LEVER SWITCHES,
(3) the EXTERNAL PROGRAMMING rearpanel connector M1.

The gate outputs are connected to COUNTER circuit board F9/F10, DECIMAL TO BCD CONVERTER.

When a LEVER SWITCH (determined by the points shown in Fig. 3.3) is depressed, the output from SWITCH DRIVER F1/F2 is " 0 " whereas " 1 " is present at all other terminals. Via the connection in the LEVER SWITCH, " 0 " is applied to the input of the MULTIPLEXER gate for the digit in question.

Output from this gate is transmitted to the COUNTER circuit's DECIMAL TO BCD CONVERTER F9/F10 as "1". Since the other inputs are " 0 ", this will cause the LEVER SWITCH setting to be transmitted to the COUNTER circuit.

If a LEVER SWITCH is set at the digit 0 , all nine multiplexer outputs will be " 0 ".

Scanning of the LEVER SWITCHes is determined by SWITCH DRIVER circuits F1/F2. The sequence is determined by their input data a, b, c (see PULSE/PAUSE CONTROL F7, section 3.3.6); and by K, $\bar{K} L, \bar{K} \bar{L} M$ and $\bar{K} L \bar{M} N$ (see BASIC ELEMENT SELECTOR F5, section 3.3.4).

For EXTERNAL PROGRAMMING, all LEVER SWITCHes are set to digit 0 and a connection (the dots shown in Fig. 3.3) is instead made between the SWITCH DRIVER circuit and the MULTIPLEXER's EXTERNAL input terminals.

Fig. 3.3 DR2-10001: MULTIPLEXER F13. Principle diagram.

DR2-10001: MULTIPLEXER F13.
Electrical parts list.

DR2-10001: MULTIPLEXER F13.
Circuit diagram.

3.3.11 DF1-10003: RECTIFIER CIRCUIT

and
DF1-10004: POWER SUPPLY

RECTIFIER CIRCUIT

The circuit board is mounted on the mains transformer and consists of three bridge rectifiers and an input capacitor.

In the interest of clearness, the on/off switch, voltage changeover switch, mains transformer and the RECTIFIER and POWER SUPPLY circuits are shown with their associated interconnections.

The mains transformer has three secondaries which deliver $8 \mathrm{~V}, 9.5 \mathrm{~V}$ and 10 V RIMS, respectively. Each of these voltages is fed to its separate bridge rectifier and associated input capacitor.

After rectification and filtering, the following nominal voltages result, as measured on the RECTIFIER CIRCUIT.

Terminals $1-10$: 7.5 V
Terminals 3-4:11.3 V
Terminals 6-7:10.5 V

POWER SUPPLY

The instrument uses stabilized voltages of +5 V and +6.8 V .

The heart of the +5 V supply is integrated voltage regulator IC1. The circuit has an electronic protection circuit to protect against both overcurrent and overvoltage. Output current is approx.1.8 A, making it necessary to provide booster transistor Q1 in integrated circuit IC1, whose maximum output capability is 250 mA . Q1 is powered from a separate supply in order to minimize power losses.

R7 and R4 secure bias current for Q1 and IC1. RF bypassing is provided by RC networks R1, C 1 and R6, C3.

Voltage divider R2, R3 determines the control voltage for IC1 and hence the output voltage, 5 V .

Maximum output current is determined by resistor R 4 . Q2 becomes conductive when the voltage drop across R 4 exceeds approx. 0.6 V , thus causing output current limiting.
The unit moreover has an overvoltage protection circuit consisting of SCR1 and Q3 and associated components.

The protection circuit is activated if the collector-emitter junction of Q1 is shortcircuited. This will cause SCR1 to be triggered via Q3, so that the regulator output terminals are short-circuited. Besides, fuse S2 will blow, thus making the regulator inoperative.

Cir. Ref.	Qty	Stock No.		Description	Manufacturer (Subibect to changel
C1	1	MY2-51524			

Electrical parts list.

Cir Ref	Qty	Stock No.	Description	Manufacturer (Subject to change
Cl-2				
+4	3	MY2-23667	$0,1 \mu \mathrm{~F} \quad 10 \% 250 \mathrm{~V}$ DC	Philips
C3	1	MY2-51571	\#,7nF $5 \% 63 \mathrm{~V}$	Siemens
05	1	MY2-23759	$220 \mu \mathrm{~F} \quad 20$ \% 10 V DC	Philips
C6	1	MY2-23969	$2.2 \mu \mathrm{~F}$ - 20 V DC	-
C 7	1		1 HF - 35 V DC	-
SCRI	1	MY1-51189	MCR 406-1	Motorola
ICl	1	MY1-51117	MC. 1469 R	-
$01+24$	2	MY1-51523	2N 3055	-
Q2	1	MY1-23466	2N 4124	-
23	1	MY1-23467	2N 4126	N.S.
Q5	1	MY1-23768	2N1711	
$\mathrm{R} 1+6$	2	MY2-31505	$102501 / 3 \mathrm{~W}$	Beyschlag
R5	1	MY2-31518	120Ω - -	-
R 7	1	MY2-31521	220Ω - -	-
R8	1	MY2-31528	820 2 -	-
R9	1	Mr2-31525	470 -	-
R10	1	MY2-31522	270 Q - -	-
R11	1	MY2-31519	150Ω	
R2	1	MY2-26271	$3.0 \mathrm{k} \Omega$ I \% 1/4 W	Vitrohm
R3	1	MY 2-51565	$5,8 \mathrm{k}$ \% - -	-
R4	1	MY2-26235	$2,0 \Omega 11 \%$	-
21	1	MY1-23587	$2 \mathrm{P} 8.2 \quad 5 \% \quad 1 / 4 \mathrm{~W}$	ITT
	1	MY4-51510	Heatsink WA 111-1	Schaffner
	1	NL2-66711	Printed Circuit Board	Elmi

DF1-10004: POWER SUPPLY.
Electrical parts list.

DF1-10003: RECTIFIER CIRCUIT and
DF1-10004: POWER SUPPLY.

3.3.12 WIRING DIAGRAM PG 1 and PG 2

The complete wiring diagram breaks down into two separate diagrams.

PG $1 / 2$ shows the cabling to the front-panel components. Individual component numbers and their functions are included in the interest of clearness. All lead destinations carry the
designations of the cable bundles. A, B, C, D and E refer to the cable bundles going to the chassis section of the instrument.

Wiring diagram PG $2 / 2$ shows all wiring connections in the chassis section of the instrument. Here, too, all terminal destinations are listed.

${ }_{\mathrm{Cir}}^{\mathrm{C}}$,	Qty	Stock No.	Description	Manufacturer (Subject to change)
F1-2	2	DR4-20003	Switch Driver	ELMI
F3	1	DN7-20001	Time Base Unit	-
F4	1	DN3-10001	Clock Oscillator	-
F5	1	DR4-20004	Basic Element Selector	-
F6	1	DR4-20002	Pulse Train Selector	-
F7	1	DR4-20001	Pulse/Pause Control	-
F8	1	DHL-20001	Trigger Pulse Generator	-
F9-10	2	DH2-20001	Counter	-
F11-12	2	DL3-10001	Contact Unit	-
F13	1	DR2-10001	Multiplexer	-
F14	1	DF1-10004	Power Supply	-
F15	1	DF1-10003	Rectifier	-

Wiring diagram.
Electrical parts list (1).

Cir. Ref.	Oty	Stock No.	Description	Manufacturer (Subject to change)
$\begin{aligned} & 0101- \\ & 0142 \end{aligned}$	42			
	42	M11-51534	Selector 10 pos. LlO-01A	Cherry
	13	MY1-51535	Fnd. cap. 009-0498	-
	13	PY1-51336	- - 009-0499	-
	16	MY4-51537	Mounting set 012-0150	-
	10	MY4-51538	- - 012-0148	-
R1-14	14	MY2-31509	$2285 \% 1 / 3 \mathrm{~W}$	Beyschlag
	1	MY7-51559	Power Selector SWP 110-127-220-240 V	Schurter
	2	MY2 -51568	Fuseholder 031-1001	Jergensentco
	2	MY2 -51569	Cap for 031-1001	-
S1	1	MY2-51020	Fuse 1A flink	Vickmann
S2	1	MY2-51570	- 3.15 A	-
S3	1	MY2-51022	- 1A trwg	-
Tl	1	MY1-51511	Transfer JS31.5 NO. 13733/2	J. Schou
W1	1	TK3-1500/90	Powercord	Elmi
AI	1	MY7-51526	Power Switch 23146-14241	D.A.V.
B1-4	4	MY7-51560	BNC Socket	Suhner
$\begin{aligned} & B 5+7+ \\ & 8+10 \end{aligned}$	4	MY7-23521/90	O Socket PKI 10 black	Hirschmann
B6+9	2	- - /\%0	O- - - red	-
$\mathrm{Cl}+2$	2	MY2-51505	$10000 \mu \mathrm{~F} \quad 16 \mathrm{~V}$	Philips
J1	1	MY7-51518	Knob for 6 mm axle 021-441	Elma.
		MY7-51519	Pointer for 6 mm axle 041-402	-
		MY7-23442	Cap for do.	
MI	1	X450999/100	80-way multi socket	LME
M2	1	MY7-23831	Power Connector StF 23	Kault+BUX
M3+14	12	MY7-23526	Connector frame 31 way	Siemens
01-09	9	MY1-51562	Pushbutton switch	LME
	18	MY2-6715/1	Lamps $6 \mathrm{~V} 40 \mathrm{~mA} \mathrm{T5,5}$	
011	1	MY1-51561	Rotary Switch 03-2x5u	Elma

Wiring diagram.
Electrical parts list (2).

Wiring diagram PG $2 / 2$.

Wiring diagram PG $1 / 2$.

Wiring diagram PG $1 / 2$.

4. SERVICE AND MAINTENANCE

4.1 Introduction

The ZYHK-40101 PULSE TRAIN GENERATOR is an instrument of such design, that only skilled personnel should make any necessary repair.

In case of difficulties that cannot be overcome by the use of these service instructions, please write or phone to your ELMI-agent, giving full information about the trouble and steps taken to remedy it. Be sure to mention the serial and type numbers of the instrument.

4.2 Mechanical Details

The test equipment can be removed from the cabinet by removing the power connecting cable and the four fixing screws along the edges of the front panel. Before removing the equipment from the cabinet switch off the mains voltage.

When servicing requires access to the switches or other components placed at the rear of the front panel, the latter can be removed from the chassis by unscrewing the four screws which secure the chassis to the connecting pieces between the chassis and the front panel.

4.3 Replacement of Indicator Lamps

The lamps can be replaced from the frontpanel, by pulling off the push-button cover. Now the lamp can be removed by means of lamp pincers.

5. REPLACEABLE PARTS

5.1 Introduction

This section contains information for ordering replacement parts.

Component lists with numbers corresponding to type and serial number refer to parts in alphanumerical order of their reference designations. These component lists give the following information:
a) Component circuit designation in the diagram.
b) Component description.
c) Component manufacturer.

5.2 Component Designation

A. Power Switches
C. Capacitors
D. Diodes

IC. Integrated Circuit
K. Indicator Lamps
L. Inductors
M. Sockets and Plugs
O. Selectors and Switches
P. Printed Circuit Boards
Q. Transistors
R. Resistors and Potentiometers
S. Fuses
T. Transformers
X. Crystals
Z. Zener Diodes

RE. Relays

Specify the following information for each part:
a) Type and serial number of instrument.
b) Circuit reference.
c) Description.

To order a part not listed, give a complete description of the part and include its function and location.

5.3 How to Order Parts

To order replacement parts, address order or inquiry either to your authorized representative or to:

> ELMI A/S

90, Kirkebjerg Alle
DK-2600 GLOSTRUP
Denmark
Phone: National: 02-454211 International + 452454211

Telex: 33423 ELMI DK
Cables: ELMIWORKS

[^0]: 1.8 .3

 Difference between CONTACT 1 and CONTACT $2 \mathrm{max} . \pm .5 \mathrm{~ms}$.

[^1]: Programming the ZYHK-40101 PULSE TRAIN GENERATOR

